我正在尝试使用 scikit_learn 和 pandas 解决 python 中的决策树问题。数据集以 CSV 文件的形式提供。当我尝试在 python 中加载数据时,我收到一条错误消息,显示“ValueError:无法将字符串转换为浮点数:'CustomerID'”。我不知道我在代码中做错了什么。
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
col_names=['CustomerID','Gender','Car Type', 'Shirt Size','Class']
pima=pd.read_csv("F:\Current semster courses\Machine
Learning\ML_A1_Fall2019\Q2_dataset.csv",header=None, names=col_names)
pima.head()
feature_cols=['CustomerID','Gender','Car Type', 'Shirt Size']
X=pima[feature_cols]
y=pima.Class
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
clf = DecisionTreeClassifier()
# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)
#Predict the response for test dataset
y_pred = clf.predict(X_test)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
有人可以告诉我我做错了什么吗?
数据集:
CustomerID Gender Car Type Shirt Size Class
1 M Family Small C0
2 M Sports Medium C0
3 M Sports Medium C0
4 M Sports Large C0
5 M Sports Extra Large C0
6 M Sports Extra Large C0
7 F Sports Small C0
8 F Sports Small C0
9 F Sports Medium C0
10 F Luxury Large C0
11 M Family Large C1
12 M Family Extra Large C1
13 M Family Medium C1
14 M Luxury Extra Large C1
15 F Luxury Small C1
16 F Luxury Small C1
17 F Luxury Medium C1
18 F Luxury Medium C1
19 F Luxury Medium C1
20 F Luxury Large C1
眼眸繁星
相关分类