我有一个看起来像这样的数据框
+-----+------------+-------------+-------------------------+----+----------+----------+
| | Actual_Lat | Actual_Long | Time | ID | Cal_long | Cal_lat |
+-----+------------+-------------+-------------------------+----+----------+----------+
| 0 | 63.433376 | 10.397068 | 2019-09-30 04:48:13.540 | 11 | 10.39729 | 63.43338 |
| 1 | 63.433301 | 10.395846 | 2019-09-30 04:48:18.470 | 11 | 10.39731 | 63.43326 |
| 2 | 63.433259 | 10.394543 | 2019-09-30 04:48:23.450 | 11 | 10.39576 | 63.43323 |
| 3 | 63.433258 | 10.394244 | 2019-09-30 04:48:29.500 | 11 | 10.39555 | 63.43436 |
| 4 | 63.433258 | 10.394215 | 2019-09-30 04:48:35.683 | 11 | 10.39505 | 63.43427 |
| ... | ... | ... | ... | ...| ... | ... |
| 70 | NaN | NaN | NaT | NaN| 10.35826 | 63.43149 |
| 71 | NaN | NaN | NaT | NaN| 10.35809 | 63.43155 |
| 72 | NaN | NaN | NaT | NaN| 10.35772 | 63.43163 |
| 73 | NaN | NaN | NaT | NaN| 10.35646 | 63.43182 |
| 74 | NaN | NaN | NaT | NaN| 10.35536 | 63.43196 |
+-----+------------+-------------+-------------------------+----------+----------+----------+
Actual_lat并Actual_long包含从 GPS 设备获得的数据的 GPS 坐标。Cal_lat是从 获得的cal_latGPS 坐标OSRM's API。如您所见,实际坐标中缺少大量数据。我正在寻找一个数据集,这样当我取实际_lat 与 cal_lat 的差异时,它应该为零或至少接近于零。我试图用目的地纬度和经度填充这些缺失值,但这会导致巨大的差异。我的问题是如何使用 python/pandas 填充这些值,以便当车辆遵循 OSRM 估计路径时,实际纬度/经度和估计经度/经度之间的差异应该为零或接近零。我是 GIS 数据集的新手,不知道如何处理它们。
慕村225694
德玛西亚99
相关分类