Plotly Figure Widget 帮助我创建一个交互式散点图,即,我可以在散点图上选择数据点,并根据选择我的表小部件显示记录。我需要帮助将此表转换为熊猫数据框。
import plotly.graph_objs as go
import plotly.offline as py
import pandas as pd
import numpy as np
from ipywidgets import interactive, HBox, VBox
py.init_notebook_mode()
df = pd.read_csv('https://raw.githubusercontent.com/jonmmease/plotly_ipywidget_notebooks/master/notebooks/data/cars/cars.csv')
f = go.FigureWidget([go.Scatter(y = df['City mpg'], x = df['City mpg'], mode = 'markers')])
scatter = f.data[0]
N = len(df)
scatter.x = scatter.x + np.random.rand(N)/10 *(df['City mpg'].max() - df['City mpg'].min())
scatter.y = scatter.y + np.random.rand(N)/10 *(df['City mpg'].max() - df['City mpg'].min())
scatter.marker.opacity = 0.5
def update_axes(xaxis, yaxis):
scatter = f.data[0]
scatter.x = df[xaxis]
scatter.y = df[yaxis]
with f.batch_update():
f.layout.xaxis.title = xaxis
f.layout.yaxis.title = yaxis
scatter.x = scatter.x + np.random.rand(N)/10 *(df[xaxis].max() - df[xaxis].min())
scatter.y = scatter.y + np.random.rand(N)/10 *(df[yaxis].max() - df[yaxis].min())
axis_dropdowns = interactive(update_axes, yaxis = df.select_dtypes('int64').columns, xaxis = df.select_dtypes('int64').columns)
# Create a table FigureWidget that updates on selection from points in the scatter plot of f
t = go.FigureWidget([go.Table(
header=dict(values=['ID','Classification','Driveline','Hybrid'],
fill = dict(color='#C2D4FF'),
align = ['left'] * 5),
cells=dict(values=[df[col] for col in ['ID','Classification','Driveline','Hybrid']],
fill = dict(color='#F5F8FF'),
align = ['left'] * 5))])
def selection_fn(trace,points,selector):
t.data[0].cells.values = [df.loc[points.point_inds][col] for col in ['ID','Classification','Driveline','Hybrid']]
scatter.on_selection(selection_fn)
# Put everything together
VBox((HBox(axis_dropdowns.children),f,t))
只是期望在将散点图上的点选择到熊猫数据框后创建的表。
慕田峪7331174
开心每一天1111
哔哔one
相关分类