我正在尝试自己实现霍夫线变换,但我无法完成绘制高投票 thetas/rhos 值的最后一步。我试图自己做数学,但仍然得到错误的输出。当我检查其他一些实现时,他们总是使用这种方法从极坐标转换为笛卡尔坐标以找到两个点。
for r,theta in lines[0]:
# Stores the value of cos(theta) in a
a = np.cos(theta)
# Stores the value of sin(theta) in b
b = np.sin(theta)
# x0 stores the value rcos(theta)
x0 = a*r
# y0 stores the value rsin(theta)
y0 = b*r
# x1 stores the rounded off value of (rcos(theta)-1000sin(theta))
x1 = int(x0 + 1000*(-b))
# y1 stores the rounded off value of (rsin(theta)+1000cos(theta))
y1 = int(y0 + 1000*(a))
# x2 stores the rounded off value of (rcos(theta)+1000sin(theta))
x2 = int(x0 - 1000*(-b))
# y2 stores the rounded off value of (rsin(theta)-1000cos(theta))
y2 = int(y0 - 1000*(a))
# cv2.line draws a line in img from the point(x1,y1) to (x2,y2).
# (0,0,255) denotes the colour of the line to be
#drawn. In this case, it is red.
cv2.line(img,(x1,y1), (x2,y2), (0,0,255),2)
来自GeeksForGeeks的先前代码。我没有得到的是那些方程x1 = int(x0 + 1000*(-b))& y2 = int(y0 - 1000*(a))。通过将这些方程转换为数学形式:x1 = r cos(theta) + r (-sin(theta)) || y1 = r sin(theta) + r (cos(theta))
这两个方程对我来说很奇怪。当我们从极坐标转移到笛卡尔坐标时,'r cos(theta)' 是正常的。但是,下一部分不清楚。谁能解释它背后的原始数学?
达令说
相关分类