白衣染霜花
投入na_filter = False以将您的列类型转换为字符串。然后找到所有包含错误数据的行,然后将它们过滤掉您的数据框。>>> df = pd.read_csv('sample.csv', header = 0, na_filter = False)>>> df col1 col2 col30 0 1 11 0 0 02 1 1 13 col1 col2 col34 0 1 15 0 0 06 1 1 1>>> type(df.iloc[0,0])<class 'str'>现在您已将每列中的数据解析为字符串,找到col1, col2, and col3df 中的所有值,如果您在每列中找到它们,则创建一个新列np.where(),如下所示:>>> df['Tag'] = np.where(((df['col1'] != '0') & (df['col1'] != '1')) & ((df['col2'] != '0') & (df['col2'] != '1')) & ((df['col3'] != '0') & (df['col3'] != '1')), ['Remove'], ['Don\'t remove'])>>> df col1 col2 col3 Tag0 0 1 1 Don't remove1 0 0 0 Don't remove2 1 1 1 Don't remove3 col1 col2 col3 Remove4 0 1 1 Don't remove5 0 0 0 Don't remove6 1 1 1 Don't remove现在,使用 过滤掉列中标记为Removed的那个。Tagisin()>>> df2 = df[~df['Tag'].isin(['Remove'])]>>> df2 col1 col2 col3 Tag0 0 1 1 Don't remove1 0 0 0 Don't remove2 1 1 1 Don't remove4 0 1 1 Don't remove5 0 0 0 Don't remove6 1 1 1 Don't remove删除Tag列:>>> df2 = df2[['col1', 'col2', 'col3']]>>> df2 col1 col2 col30 0 1 11 0 0 02 1 1 14 0 1 15 0 0 06 1 1 1最后将您的数据帧类型转换为 int,如果您需要它是整数:>>> df2 = df2.astype(int)>>> df2 col1 col2 col30 0 1 11 0 0 02 1 1 14 0 1 15 0 0 06 1 1 1>>> type(df2['col1'][0])<class 'numpy.int32'>注意:如果您想要标准索引,请使用:>>> df2.reset_index(inplace = True, drop = True)>>> df2 col1 col2 col30 0 1 11 0 0 02 1 1 13 0 1 14 0 0 05 1 1 1
BIG阳
您只需要执行以下操作:假设df_raw您的原始数据框具有列标题作为列名并在其他几行中重复,则您更正的数据框是df.# Filter out only the rows without the headers in them.headers = df_raw.columns.tolist()df = df_raw[df_raw[headers[0]]!=headers[0]].reset_index(drop=True)假设:- 我们假设第一列标题的出现意味着必须删除该行。现在详细介绍一个详细的代码块,任何人都可以- 创建数据,- 将其写入 csv 文件,- 将其作为数据帧加载,然后- 删除作为标题的行。import numpy as npimport pandas as pd# make a csv file to load as dataframedata = '''col1, col2, col30, 1, 10, 0, 01, 1, 1col1, col2, col30, 1, 10, 0, 01, 1, 1'''# Write the data to a csv filewith open('data.csv', 'w') as f: f.write(data)# Load your data with header=Nonedf_raw = pd.read_csv('data.csv', header=None)# Declare which row to find the header data: # assuming the top one, we set this to zero.header_row_number = 0# Read in columns headersheaders = df_raw.iloc[header_row_number].tolist()# Set new column headersdf_raw.columns = headers# Filter out only the rows without the headers in them# We assume that the appearance of the # first column header means that row has to be dropped# And reset index (and drop the old index column)df = df_raw[df_raw[headers[0]]!=headers[0]].reset_index(drop=True)df