使用线性回归处理缺失值

我试图用线性回归处理其中一列中的缺失值。


该列的名称是“Landsize”,我正在尝试使用其他几个变量通过线性回归来预测 NaN 值。


这里是林。回归代码:


# Importing the dataset

dataset = pd.read_csv('real_estate.csv')


from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

data = dataset[['Price','Rooms','Distance','Landsize']]

#Step-1: Split the dataset that contains the missing values and no missing values are test and train respectively.

x_train = data[data['Landsize'].notnull()].drop(columns='Landsize')

y_train = data[data['Landsize'].notnull()]['Landsize']

x_test = data[data['Landsize'].isnull()].drop(columns='Landsize')

y_test = data[data['Landsize'].isnull()]['Landsize']

#Step-2: Train the machine learning algorithm

linreg.fit(x_train, y_train)

#Step-3: Predict the missing values in the attribute of the test data.

predicted = linreg.predict(x_test)

#Step-4: Let’s obtain the complete dataset by combining with the target attribute.

dataset.Landsize[dataset.Landsize.isnull()] = predicted

dataset.info()

当我尝试检查回归结果时,出现此错误:


ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

准确性:


accuracy = linreg.score(x_test, y_test)

print(accuracy*100,'%')


肥皂起泡泡
浏览 347回答 1
1回答

米琪卡哇伊

我认为您在这里做错的是您将 NaN 值传递给算法,处理 NaN 值是预处理数据的主要步骤之一。因此,也许您需要将 NaN 值转换为 0 并预测何时具有 Landsize = 0 (这与逻辑上具有 NaN 值相同,因为 landsize 不能为 0 )。我认为你做错的另一件事是:x_train = data[data['Landsize'].notnull()].drop(columns='Landsize') y_train = data[data['Landsize'].notnull()]['Landsize']x_test = data[data['Landsize'].isnull()].drop(columns='Landsize')y_test = data[data['Landsize'].isnull()]['Landsize']您正在为训练集和测试集分配相同的数据。你也许应该这样做:X = data[data['Landsize'].notnull()].drop(columns='Landsize')    y = data[data['Landsize'].notnull()]['Landsize']  from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python