使用 .toPandas() 函数时如何修复 Py4JJavaError?

我是 pyspark 的新手,我正在尝试使用 word_tokenize() 函数。这是我的代码:


import nltk

from nltk import word_tokenize

import pandas as pd


df_pd = df2.select("*").toPandas()

df2.select('text').apply(word_tokenize)

df_pd.show()

我使用 JDK 1.8、Python 3.7、spark 2.4.3。


你能告诉我我做错了什么吗?如何解决?该部分下面的代码运行良好,没有任何错误。


我收到这样的消息:


Py4JJavaError: An error occurred while calling o106.collectToPython.

: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 14.0 failed 1 times, most recent failure: Lost task 0.0 in stage 14.0 (TID 330, localhost, executor driver): java.lang.OutOfMemoryError: Java heap space

    at java.util.Arrays.copyOf(Arrays.java:3236)

    at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118)

    at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)

    at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)

    at org.apache.spark.util.ByteBufferOutputStream.write(ByteBufferOutputStream.scala:41)

    at java.io.ObjectOutputStream$BlockDataOutputStream.write(ObjectOutputStream.java:1853)

    at java.io.ObjectOutputStream.write(ObjectOutputStream.java:709)

    at org.apache.spark.util.Utils$.writeByteBuffer(Utils.scala:260)

    at org.apache.spark.scheduler.DirectTaskResult$$anonfun$writeExternal$1.apply$mcV$sp(TaskResult.scala:50)

    at org.apache.spark.scheduler.DirectTaskResult$$anonfun$writeExternal$1.apply(TaskResult.scala:48)

    at org.apache.spark.scheduler.DirectTaskResult$$anonfun$writeExternal$1.apply(TaskResult.scala:48)

    at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1326)

    at org.apache.spark.scheduler.DirectTaskResult.writeExternal(TaskResult.scala:48)

    at java.io.ObjectOutputStream.writeExternalData(ObjectOutputStream.java:1459)

    at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1430)

    at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)

    at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)


 and more....


眼眸繁星
浏览 573回答 1
1回答

噜噜哒

toPandas 针对较小的数据集进行了优化。正如建议的那样,这可能是由于内存不足,您收到了错误。尝试限制您的数据集大小: df_pd = df2.limit(10).select("*").toPandas()应用您的函数,然后运行 .head(10) 以消除内存错误的问题。
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python