请问如果建立一棵二叉树,要求先建立一个空树InitTree()和销毁树DestroyTree()函数

建立一棵二叉树,要求先建立一个空树InitTree()和销毁树DestroyTree()函数,然后用先序方法构造一棵二叉树,然后按中序遍历的方式输出这棵树。

慕侠2389804
浏览 224回答 2
2回答

蝴蝶不菲

#include<iostream>using namespace std;typedef char ElemType;struct BTreeNode{ ElemType data;BTreeNode *leftChild;BTreeNode *rightChild;};void InitTree(BTreeNode* T){T=NULL;}void DestroyTree(BTreeNode* T){if(T!=NULL) {DestroyTree(T->leftChild);DestroyTree(T->rightChild);delete T;}}void CreateBiTree(BTreeNode* &T){ ElemType mark;cin>>mark;if(mark=='$') T=NULL;else {T=new BTreeNode;T->data=mark;CreateBiTree(T->leftChild);CreateBiTree(T->rightChild);}}void InOrder(BTreeNode* T ){if(T!=NULL){InOrder(T->leftChild);cout<<T->data;InOrder(T->rightChild);}}void main(){BTreeNode *T=new BTreeNode;InitTree(T);cout<<"按先序序列输入:"<<endl;cout<<"例如输入ABC$$DE$G$$F$$$"<<endl;CreateBiTree(T);cout<<"按中序序列输出:"<<endl;InOrder(T );cout<<endl;DestroyTree(T);}

慕斯王

#include<iostream>using namespace std;// 二叉树结点类struct BinTreeNode{// 数据成员:double data; // 数据域BinTreeNode *leftChild; // 左孩子指针域BinTreeNode *rightChild; // 右孩子指针域BinTreeNode(){ leftChild = rightChild = NULL;}; // 无参数的构造函数BinTreeNode(double &val,BinTreeNode *lChild = NULL, BinTreeNode *rChild = NULL);};BinTreeNode::BinTreeNode(double &val, BinTreeNode *lChild,BinTreeNode *rChild){data = val; // 数据元素值leftChild = lChild; // 左孩子rightChild = rChild; // 右孩子}//节点类,其数据成员为二叉节点类型的指针struct Node{BinTreeNode *data; // 数据域Node *next; // 指针域Node(){ next = NULL;};Node( BinTreeNode *item, Node *link = NULL){ data = item; next = link;};};//队列类,作为层次遍历的辅助数据结构用class LinkQueue{protected:Node *front, *rear;public:LinkQueue(){rear = front = new Node; };void OutQueue(BinTreeNode * &e); // 出队操作void InQueue(BinTreeNode * &e); // 入队操作bool Empty(){return front==rear;};};void LinkQueue::OutQueue(BinTreeNode * &e){ Node *tmpPtr = front->next;e = tmpPtr->data;front->next = tmpPtr->next;if (rear == tmpPtr){rear = front;}delete tmpPtr;}void LinkQueue::InQueue(BinTreeNode * &e){Node *tmpPtr = new Node(e);rear->next = tmpPtr;rear = tmpPtr;}// 二叉树类class BinaryTree{protected:BinTreeNode *root;// 辅助函数:void DestroyHelp(BinTreeNode * &r);void PreOrderHelp(BinTreeNode *r) const ;void InOrderHelp(BinTreeNode *r) const ;void PostOrderHelp(BinTreeNode *r) const ;int HeightHelp(const BinTreeNode *r) const;int NodeCountHelp(const BinTreeNode *r) const;int leafNodeCountHelp(const BinTreeNode *r) const;public:BinaryTree();virtual ~BinaryTree();BinTreeNode *GetRoot() const;void InOrder() const;void PreOrder() const;void PostOrder() const;void LevelOrder() const;int NodeCount() const;int leafNodeCount() const;void InsertLeftChild(BinTreeNode *cur, double &e);void InsertRightChild(BinTreeNode *cur, double &e);int Height() const;BinaryTree( double &e);};BinaryTree ::BinaryTree(){root = NULL;}BinaryTree ::~BinaryTree(){DestroyHelp(root);}BinTreeNode *BinaryTree ::GetRoot() const{return root;}void BinaryTree ::PreOrderHelp(BinTreeNode *r) const{if (r != NULL){cout<<(r->data)<<" ";PreOrderHelp(r->leftChild);PreOrderHelp(r->rightChild);}}void BinaryTree ::PreOrder() const{PreOrderHelp(root);}void BinaryTree ::InOrderHelp(BinTreeNode *r) const{if (r != NULL){InOrderHelp(r->leftChild);cout<<(r->data)<<" ";InOrderHelp(r->rightChild);}}void BinaryTree ::InOrder() const{InOrderHelp(root);}void BinaryTree ::PostOrderHelp(BinTreeNode *r) const{if (r != NULL){PostOrderHelp(r->leftChild);PostOrderHelp(r->rightChild);cout<<(r->data)<<" ";}}void BinaryTree ::PostOrder() const{PostOrderHelp(root);}void BinaryTree ::LevelOrder() const{LinkQueue q; // 队列BinTreeNode *t = root; // 从根结点开始进行层次遍历if (t != NULL) q.InQueue(t);while (!q.Empty()){ q.OutQueue(t);cout<<(t->data)<<" ";if (t->leftChild != NULL)q.InQueue(t->leftChild);if (t->rightChild != NULL)q.InQueue(t->rightChild);}}int BinaryTree ::HeightHelp(const BinTreeNode *r) const{if(r == NULL){ return 0;}else{ int lHeight, rHeight;lHeight = HeightHelp(r->leftChild); // 左子树的高rHeight = HeightHelp(r->rightChild); // 右子树的高return (lHeight > rHeight ? lHeight : rHeight) + 1;}}int BinaryTree ::Height() const{return HeightHelp(root);}BinaryTree ::BinaryTree( double &e){root = new BinTreeNode (e);}int BinaryTree ::NodeCountHelp(const BinTreeNode *r) const{if (r ==NULL) return 0;else return NodeCountHelp(r->leftChild) + NodeCountHelp(r->rightChild) + 1;}int BinaryTree ::NodeCount() const{return NodeCountHelp(root);}int BinaryTree ::leafNodeCountHelp(const BinTreeNode *r) const{ int lt,rt;if (r==NULL) return 0;else if(r->leftChild==NULL &&r->rightChild==NULL)return 1;else{lt=leafNodeCountHelp(r->leftChild);rt=leafNodeCountHelp(r->leftChild);return lt+rt;}}int BinaryTree ::leafNodeCount() const{return leafNodeCountHelp(root);}void BinaryTree ::InsertLeftChild(BinTreeNode *cur, double &e){if (cur == NULL){return;}else{ // 插入左孩子BinTreeNode *child = new BinTreeNode (e);if (cur->leftChild != NULL){child->leftChild = cur->leftChild;}cur->leftChild = child;return;}}void BinaryTree ::InsertRightChild(BinTreeNode *cur, double &e){if (cur == NULL){ return;}else{ // 插入右孩子BinTreeNode *child = new BinTreeNode (e);if (cur->rightChild != NULL){ child->rightChild = cur->rightChild;}cur->rightChild = child;return;}}void BinaryTree ::DestroyHelp(BinTreeNode *&r){if(r != NULL){ DestroyHelp(r->leftChild); // 销毁左子树DestroyHelp(r->rightChild); // 销毁右子树delete r; // 销毁根结点r = NULL;}}int main(void){ double e;BinTreeNode *cur;cout<<"请输入根节点的数值:";cin>>e;cur = new BinTreeNode(e);BinaryTree bt(e); // 建立二叉树cur = bt.GetRoot();cout<<"请输入根节点左孩子的数值:";cin>>e;bt.InsertLeftChild(cur, e);cout<<"请输入根节点右孩子的数值:";cin>>e;bt.InsertRightChild(cur, e);cout<<"请输入根节点左孩子的左孩子的数值:";cin>>e;bt.InsertLeftChild(cur->leftChild, e);cout<<"请输入根节点右孩子的左孩子的数值:";cin>>e;bt.InsertLeftChild(cur->rightChild, e);cout<<"请输入根节点右孩子的右孩子的数值:";cin>>e;bt.InsertRightChild(cur->rightChild,e);cout << "先序遍历:" << endl;bt.PreOrder();cout<<endl;system("PAUSE");cout << "中序遍历:" << endl;bt.InOrder();cout<<endl;system("PAUSE");cout << "后序遍历:" << endl;bt.PostOrder();cout<<endl;system("PAUSE");cout << "层次遍历:" << endl;bt.LevelOrder();cout<<endl;system("PAUSE");cout<<"树的高度为"<<bt.Height()<<endl;cout<<"树中节点数为"<<bt.NodeCount()<<endl;cout<<"树中叶子节点数为"<<bt.leafNodeCount()<<endl;return 0;}在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2^{i-1}个结点;深度为k的二叉树至多有2^k-1个结点;对任何一棵二叉树T,如果其终端结点数为n_0,度为2的结点数为n_2,则n_0=n_2+1。一棵深度为k,且有2^k-1个节点称之为满二叉树;深度为k,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中,序号为1至n的节点对应时,称之为完全二叉树。
打开App,查看更多内容
随时随地看视频慕课网APP