我使用Keras(版本 2.2.4)训练了以下模型:
# imports ...
model = Sequential()
model.add(Conv2D(filters=64, kernel_size=5, data_format="channels_last", activation="relu"))
model.add(BatchNormalization())
model.add(MaxPooling2D(data_format="channels_last"))
model.add(Conv2D(filters=32, kernel_size=3, data_format="channels_last", activation="relu"))
model.add(BatchNormalization())
model.add(MaxPooling2D(data_format="channels_last"))
model.add(Flatten(data_format="channels_last"))
model.add(Dense(units=256, activation="relu"))
model.add(Dense(units=128, activation="relu"))
model.add(Dense(units=32, activation="relu"))
model.add(Dense(units=8, activation="softmax"))
# training ...
model.save("model.h5")
输入是 shape 的 28 x 28 灰度图像(28, 28, 1)。
我转换了模型,tensorflowjs_converter现在我想使用TensorFlow.js(版本 1.1.0)将它加载到我的网站中:
tf.loadLayersModel('./model/model.json')
这会产生以下错误:
The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.
at new e (errors.ts:48)
at e.add (models.ts:440)
at e.fromConfig (models.ts:1020)
at vp (generic_utils.ts:277)
at nd (serialization.ts:31)
at models.ts:299
at common.ts:14
at Object.next (common.ts:14)
at o (common.ts:14)
如何在无需重新训练模型的情况下修复此错误?
开满天机
暮色呼如
梵蒂冈之花
相关分类