我正在 Python 上实现快速傅里叶变换 (FFT) 算法,并且由于涉及复杂的数字操作(或者可能只是由于计算机处理浮点数的固有困难),很多时候我与预期的偏差很小价值。
我不得不使用numpy.around将计算结果四舍五入到可接受的精度(小数点后 10 位)。因此,我有时会得到诸如 -0+0j 之类的数字。从表面上看,这似乎不是一个大问题,但随后的计算涉及找到复数的参数(对于相位谱)。因此,我得到了错误的值,因为符号在计算中起着巨大的作用。
有什么办法可以将这些 -0 结果转换为 0?下面给出了一些代码。这里的重点是函数中的return语句fft(f)。
...
def fft(f):
Ni = len(f)
Mi = int(Ni / 2)
if Mi <= 2:
return [f[0] + f[1] + f[2] + f[3],
f[0] - 1j*f[1] - f[2] + 1j*f[3],
f[0] - f[1] + f[2] - f[3],
f[0] + 1j*f[1] - f[2] - 1j*f[3]]
wn = math.cos(2*math.pi/Ni) - 1j*math.sin(2*math.pi/Ni)
fe = [f[i] for i in range(Ni) if i % 2 == 0]
fo = [f[i] for i in range(Ni) if i % 2 == 1]
Fe = fft(fe)
Fo = fft(fo)
return [np.around(Fe[i] + (wn**i)*Fo[i], decimals=10) for i in range(Mi)] + [np.around(Fe[i] - (wn**i)*Fo[i], decimals=10) for i in range(Mi)]
x = [np.around(signal(n*tp/N), decimals=10) for n in range(N)] # input sequence
_X = fft(x) # discrete Fourier transform
X = [Xi/N for Xi in _X] # frequency spectrum
X_amp = [np.absolute(Xi) for Xi in X] # amplitude spectrum
X_phase = [np.angle(Xi) for Xi in X] # phase spectrum
阿晨1998
相关分类