我想计算电视广告 GRP 数据的结转效应。我的输入数据如下所示:
Variable Date Causal Half_Life
0 TV Model 2016-01-10 0 4
1 TV Model 2016-01-17 0 4
2 TV Model 2016-01-24 0 4
3 TV Model 2016-01-31 100 4
4 TV Model 2016-02-07 110 4
5 TV Model 2016-02-14 89 4
6 TV Model 2016-02-21 57 4
7 TV Model 2016-02-28 90 4
8 TV General 2016-01-10 0 4
9 TV General 2016-01-17 0 4
10 TV General 2016-01-24 0 4
11 TV General 2016-01-31 30 4
12 TV General 2016-02-07 32 4
13 TV General 2016-02-14 42 4
14 TV General 2016-02-21 39 4
15 TV General 2016-02-28 55 4
我想根据以下条件计算一个新列 df['Adstock']:
如果列 df.Variable 中组的第一行,则 df.Adstock = df.Causal 如果不是组中的第一行,则 df. Adstock = df.Causal + 0.5**(1/df.Half_life)*df.Adstock 来自上一行。
我正在使用以下代码:
import pandas as pd
import numpy as np
import numpy.random as random
import statsmodels.api as sm
import statsmodels.tsa as tsa
import statsmodels.formula.api as smf
import datetime
df = pd.read_excel('RC Data.xlsx')
df['Adstock'] = 0
df['Adstock'] = np.where(df['Variable'] == df['Variable'].shift(1), df['Adstock'].shift(1)*(0.5**(1/df['Half_Life'])) + df['Causal'], df['Causal'])
我得到的输出如下:
Variable Date Causal Half_Life Adstock
0 TV Model 2016-01-10 0 4 0.0
1 TV Model 2016-01-17 0 4 0.0
2 TV Model 2016-01-24 0 4 0.0
3 TV Model 2016-01-31 100 4 100.0
4 TV Model 2016-02-07 110 4 110.0
5 TV Model 2016-02-14 89 4 89.0
6 TV Model 2016-02-21 57 4 57.0
7 TV Model 2016-02-28 90 4 90.0
8 TV General 2016-01-10 0 4 0.0
9 TV General 2016-01-17 0 4 0.0
10 TV General 2016-01-24 0 4 0.0
墨色风雨
相关分类