我有以下数据生成器。它工作并返回预期数据。除了我将 epochs 或 batchsize 设置为等于什么之外,它只执行 12 次迭代然后给出错误(见下文)
我曾尝试更改纪元数和批量大小。
# initialize the number of epochs to train for and batch size
NUM_EPOCHS = 10 #100
BS = 32 #64 #32
NUM_TRAIN_IMAGES = len(train_uxo_scrap)
NUM_TEST_IMAGES = len(test_uxo_scrap)
def datagenerator(imgfns, imglabels, batchsize, mode="train", class_mode='binary'):
cnt=0
while True:
images = []
labels = []
#cnt=0
while len(images) < batchsize and cnt < len(imgfns):
images.append(imgfns[cnt])
labels.append(imglabels[cnt])
cnt=cnt+1
print(images)
print(labels)
print('********** cnt = ', cnt)
yield images, labels
train_gen = datagenerator(train_uxo_scrap, train_uxo_scrap_labels, batchsize=BS, class_mode='binary')
valid_gen = datagenerator(test_uxo_scrap, test_uxo_scrap_labels, batchsize=BS, class_mode='binary')
# train the network
H = model.fit_generator(
train_gen,
steps_per_epoch=NUM_TRAIN_IMAGES // BS,
validation_data=valid_gen,
validation_steps=NUM_TEST_IMAGES // BS,
epochs=NUM_EPOCHS)
我希望代码在每次迭代中通过 32 个样本经历 10 个时期。我每次迭代得到 32 个样本,但在第一个时期我只得到 12 个迭代,然后我得到以下错误。无论设置什么批次大小或纪元,都会发生这种情况。
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-83-26f81894773d> in <module>()
5 validation_data=valid_gen,
6 validation_steps=NUM_TEST_IMAGES // BS,
----> 7 epochs=NUM_EPOCHS)
~\AppData\Local\Continuum\anaconda3\envs\dltf1\lib\site-packages\tensorflow\python\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1424 use_multiprocessing=use_multiprocessing,
1425 shuffle=shuffle,
-> 1426 initial_epoch=initial_epoch)
1427
1428 def evaluate_generator(self,
PIPIONE
qq_笑_17
随时随地看视频慕课网APP
相关分类