我有一些固定大小的字体字符图像,如输入图像示例下所示。我想提取字符骨架(单像素宽)。我尝试了如下所示的各种方法,但输出都不同且不流畅。我认为一像素宽的骨架会很平滑(像素不会破裂,也没有噪点像素)。有一个更好的方法吗?如果没有,这三个中哪个最好?
输入图像样本
1) 例子
from skimage import img_as_bool, io, color, morphology
import matplotlib.pyplot as plt
image = img_as_bool(color.rgb2gray(io.imread('image.jpeg')))
out = morphology.medial_axis(image)
f, (ax0, ax1) = plt.subplots(1, 2)
ax0.imshow(image, cmap='gray', interpolation='nearest')
ax1.imshow(out, cmap='gray', interpolation='nearest')
plt.show()
输出 1
2) 例子
from PIL import Image, ImageDraw, ImageFont
import mahotas as mh
import numpy as np
image = Image.new("RGBA", (600,150), (255,255,255))
draw = ImageDraw.Draw(image)
fontsize = 150
font = ImageFont.truetype("font.TTF", fontsize)
txt = '가'
draw.text((30, 5), txt, (0,0,0), font=font)
img = image.resize((188,45), Image.ANTIALIAS)
print(type(img))
plt.imshow(img)
img = np.array(img)
im = img[:,0:50,0]
im = im < 128
skel = mh.thin(im)
noholes = mh.morph.close_holes(skel)
plt.subplot(311)
plt.imshow(im)
plt.subplot(312)
plt.imshow(skel)
输出 2
3) 例子
from skimage.morphology import skeletonize
from skimage import draw
from skimage.io import imread, imshow
from skimage.color import rgb2gray
import os
# load image from file
img_fname='D:\Ammar Data\Debbie_laptop_data\Ammar\sslab-deeplearning\GAN models\sslab_GAN\skeleton\hangul_1.jpeg'
image=imread(img_fname)
# Change RGB color to gray
image=rgb2gray(image)
# Change gray image to binary
image=np.where(image>np.mean(image),1.0,0.0)
# perform skeletonization
skeleton = skeletonize(image)
plt.imshow(skeleton)
输出3
一只萌萌小番薯
相关分类