#Feature Selection --> Random Forest
def feature_importance(clf):
# Relative Importance (Features)
clf.fit(X_train,y_train)
# Get Feature Importance from the classifier
feature_importance = clf.feature_importances_
# Normalize The Features
feature_importance = 100.0 * (feature_importance / feature_importance.max())
# Sort Features and Creat Horizontal Bar Plot
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
pl.figure(figsize=(16, 12))
pl.barh(pos, feature_importance[sorted_idx], align='center', color='#0033CC')
pl.yticks(pos, np.asanyarray(df.columns.tolist())[sorted_idx])
pl.xlabel("Relative Importance")
pl.title("Variable Importance - Random Forest")
pl.show()
clf_NB = GaussianNB()
clf_SVC = SVC()
clf_RF = RandomForestClassifier(n_estimators = 100)
algorithms = [clf_NB,clf_SVC,clf_RF]
for model in algorithms:
print("\n")
print("==============================")
print("Model: {}".format(model.__class__.__name__))
print("==============================")
print("\n")
print("**********************************************************")
print("**Training**")
print("Data Size:",len(X_train))
# Fit model to training data
train_classifier(model, X_train, y_train)
# Predict on training set and compute F1 score
predict_labels(model, X_train, y_train)
#Predict on Testing Data
print("**********************************************************")
print("**Testing**")
print("Data Size:",len(X_test))
predict_labels(model, X_test, y_test)
if clf == clf_RF:
print("\n")
feature_importance(clf_RF)
我相信 'clf' 是在上面的代码中声明的。但我不明白为什么我仍然收到此错误:
NameError Traceback (most recent call last)
<ipython-input-30-bcd9b039b6a5> in <module>
26 predict_labels(model, X_test, y_test)
27
---> 28 if clf == clf_RF:
29 print("\n")
30 feature_importance(clf_RF)
NameError: name 'clf' is not defined
梵蒂冈之花
回首忆惘然
相关分类