执行以下代码时出现上述错误。我正在尝试在下面的 tensorflow 神经网络实现教程中解决这个问题。 https://www.datacamp.com/community/tutorials/tensorflow-tutorial
def load_data(data_directory):
directories = [d for d in os.listdir(data_directory)
if os.path.isdir(os.path.join(data_directory, d))]
labels = []
images = []
for d in directories:
label_directory = os.path.join(data_directory, d)
file_names = [os.path.join(label_directory, f)
for f in os.listdir(label_directory)
if f.endswith(".ppm")]
for f in file_names:
images.append(skimage.data.imread(f))
labels.append(int(d))
return images, labels
import os
import skimage
from skimage import transform
from skimage.color import rgb2gray
import numpy as np
import keras
from keras import layers
from keras.layers import Dense
ROOT_PATH = "C://Users//Jay//AppData//Local//Programs//Python//Python37//Scriptcodes//BelgianSignals"
train_data_directory = os.path.join(ROOT_PATH, "Training")
test_data_directory = os.path.join(ROOT_PATH, "Testing")
images, labels = load_data(train_data_directory)
# Print the `labels` dimensions
print(np.array(labels))
# Print the number of `labels`'s elements
print(np.array(labels).size)
# Count the number of labels
print(len(set(np.array(labels))))
# Print the `images` dimensions
print(np.array(images))
# Print the number of `images`'s elements
print(np.array(images).size)
# Print the first instance of `images`
np.array(images)[0]
images28 = [transform.resize(image, (28, 28)) for image in images]
images28 = np.array(images28)
images28 = rgb2gray(images28)
# Import `tensorflow`
import tensorflow as tf
# Initialize placeholders
x = tf.placeholder(dtype = tf.float32, shape = [None, 28, 28])
y = tf.placeholder(dtype = tf.int32, shape = [None])
# Flatten the input data
images_flat = tf.keras.layers.flatten(x)
# Fully connected layer
logits = tf.contrib.layers.dense(images_flat, 62, tf.nn.relu)
吃鸡游戏
跃然一笑
相关分类