如何在 Python 中将行转换为列

我有如下数据。


[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.] <br>


(34,)

但我想做这个(1,34)。

当我使用 np.reshape 时


np.reshape(data, (1,34))

我得到如下数据。


[[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

  19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.]]


(1, 34)

但对我来说看起来很奇怪。你能推荐一个解决方案吗?

%np.transpose 不会改变任何东西。


一只萌萌小番薯
浏览 786回答 1
1回答

杨__羊羊

所以使用 numpy 的 reshape(),它会改变数组的维度。这些维度必须是元素总和的因子。在您的情况下,您的数组有 34 个值,因此您只有 4 个选项。您的维度为 (1,34) 或 (2,17),如下所示:&nbsp; &nbsp; array([[ 1,&nbsp; 2,&nbsp; 3,&nbsp; 4,&nbsp; 5,&nbsp; 6,&nbsp; 7,&nbsp; 8,&nbsp; 9, 10, 11, 12, 13, 14, 15, 16,&nbsp; &nbsp; &nbsp; &nbsp; 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,&nbsp; &nbsp; &nbsp; &nbsp; 33, 34]])和array([[ 1,&nbsp; 2,&nbsp; 3,&nbsp; 4,&nbsp; 5,&nbsp; 6,&nbsp; 7,&nbsp; 8,&nbsp; 9, 10, 11, 12, 13, 14, 15, 16,&nbsp; &nbsp; &nbsp; &nbsp; 17],&nbsp; &nbsp; &nbsp; &nbsp;[18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,&nbsp; &nbsp; &nbsp; &nbsp; 34]])或者您可以使用 (34, 1) 执行上述相反操作:array([[ 1],&nbsp; &nbsp; &nbsp; &nbsp;[ 2],&nbsp; &nbsp; &nbsp; &nbsp;[ 3],&nbsp; &nbsp; &nbsp; &nbsp;[ 4],&nbsp; &nbsp; &nbsp; &nbsp;[ 5],&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;.&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;.&nbsp; &nbsp; &nbsp; &nbsp;[34]或者最后 (17, 2) 看起来像:array([[ 1,&nbsp; 2],&nbsp; &nbsp; &nbsp; &nbsp;[ 3,&nbsp; 4],&nbsp; &nbsp; &nbsp; &nbsp;[ 5,&nbsp; 6],&nbsp; &nbsp; &nbsp; &nbsp;[ 7,&nbsp; 8],&nbsp; &nbsp; &nbsp; &nbsp;[ 9, 10],&nbsp; &nbsp; &nbsp; &nbsp;[11, 12],&nbsp; &nbsp; &nbsp; &nbsp;[13, 14],&nbsp; &nbsp; &nbsp; &nbsp;[15, 16],&nbsp; &nbsp; &nbsp; &nbsp;[17, 18],&nbsp; &nbsp; &nbsp; &nbsp;[19, 20],&nbsp; &nbsp; &nbsp; &nbsp;[21, 22],&nbsp; &nbsp; &nbsp; &nbsp;[23, 24],&nbsp; &nbsp; &nbsp; &nbsp;[25, 26],&nbsp; &nbsp; &nbsp; &nbsp;[27, 28],&nbsp; &nbsp; &nbsp; &nbsp;[29, 30],&nbsp; &nbsp; &nbsp; &nbsp;[31, 32],&nbsp; &nbsp; &nbsp; &nbsp;[33, 34]])这是因为 34 只能分解为 2 * 17 或 17 * 2。
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python