我正在尝试使用带有 SelectKBest 包装器的mutual_info_regression 来进行一些特征选择。但是,我一直遇到一个错误,表明我的功能列表需要重新调整为 2D 数组,不太确定为什么我不断收到此消息-
#feature selection before linear regression benchmark test
import sklearn
from sklearn.feature_selection import mutual_info_regression, SelectKBest
features = list(housing_data[housing_data.columns.difference(['sale_price'])])
target = 'sale_price'
new = SelectKBest(mutual_info_regression, k=20).fit_transform(features, target)
这是我的回溯:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-18-8c778124066c> in <module>()
3 features = list(housing_data[housing_data.columns.difference(['sale_price'])])
4 target = 'sale_price'
----> 5 new = SelectKBest(mutual_info_regression, k=20).fit_transform(features, target)
/usr/local/lib/python3.6/dist-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
463 else:
464 # fit method of arity 2 (supervised transformation)
--> 465 return self.fit(X, y, **fit_params).transform(X)
466
467
/usr/local/lib/python3.6/dist-packages/sklearn/feature_selection/univariate_selection.py in fit(self, X, y)
339 self : object
340 """
--> 341 X, y = check_X_y(X, y, ['csr', 'csc'], multi_output=True)
342
343 if not callable(self.score_func):
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)
754 ensure_min_features=ensure_min_features,
755 warn_on_dtype=warn_on_dtype,
--> 756 estimator=estimator)
757 if multi_output:
758 y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False,
慕哥6287543
相关分类