我有 K 个特征向量,它们都共享维度 n 但具有可变维度 m (nxm)。他们都生活在一个列表中。
to_be_padded = []
to_be_padded.append(np.reshape(np.arange(9),(3,3)))
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
to_be_padded.append(np.reshape(np.arange(18),(3,6)))
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17]])
to_be_padded.append(np.reshape(np.arange(15),(3,5)))
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
我正在寻找的是一种对这些 np.arrays 的行进行零填充的智能方法,以便它们共享相同的维度 m。我试过用 np.pad 解决它,但我还没有想出一个漂亮的解决方案。任何在正确方向上的帮助或推动将不胜感激!
结果应该使数组看起来像这样:
array([[0, 1, 2, 0, 0, 0],
[3, 4, 5, 0, 0, 0],
[6, 7, 8, 0, 0, 0]])
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17]])
array([[ 0, 1, 2, 3, 4, 0],
[ 5, 6, 7, 8, 9, 0],
[10, 11, 12, 13, 14, 0]])
绝地无双
莫回无
相关分类