慕莱坞森
在问题 81 中,你只能向右或向下移动。所以你的 Dijkstra 算法需要一个有向图。如果您使用字典作为图形,则此 dict 中的每个值(列表)不得超过 2 个节点(您只能在 2 个方向上移动 -> 2 个邻居)。您可以删除if@AustinHastings 的最后一段代码中的前两个块。否则,您将向 4 个方向移动并得到不同的结果。这是问题 81 中示例的解决方案。我使用了包networkx和jupyter notebook:import networkx as nximport numpy as npimport collectionsa = np.matrix("""131 673 234 103 18; 201 96 342 965 150; 630 803 746 422 111; 537 699 497 121 956; 805 732 524 37 331""")rows, columns = a.shape# Part of @AustinHastings solutiongraph = collections.defaultdict(list)for r in range(rows): for c in range(columns): if c < columns - 1: # get the right neighbor graph[(r, c)].append((r, c+1)) if r < rows - 1: # get the bottom neighbor graph[(r, c)].append((r+1, c))G = nx.from_dict_of_lists(graph, create_using=nx.DiGraph)weights = {(row, col): {'weight': num} for row, r in enumerate(a.tolist()) for col, num in enumerate(r)}nx.set_node_attributes(G, values=weights)def weight(u, v, d): return G.nodes[u].get('weight')/2 + G.nodes[v].get('weight')/2target = tuple(i - 1 for i in a.shape)path = nx.dijkstra_path(G, source=(0, 0), target=target, weight=weight)print('Path: ', [a.item(i) for i in path])%matplotlib inlinecolor_map = ['green' if n in path else 'red' for n in G.nodes()]labels = nx.get_node_attributes(G, 'weight')pos = {(r, c): (c, -r) for r, c in G.nodes()}nx.draw(G, pos=pos, with_labels=True, node_size=1500, labels = labels, node_color=color_map)输出:Path: [131, 201, 96, 342, 746, 422, 121, 37, 331]
慕容708150
在问题 81 中,你只能向右或向下移动。所以你的 Dijkstra 算法需要一个有向图。如果您使用字典作为图形,则此 dict 中的每个值(列表)不得超过 2 个节点(您只能在 2 个方向上移动 -> 2 个邻居)。您可以删除if@AustinHastings 的最后一段代码中的前两个块。否则,您将向 4 个方向移动并得到不同的结果。这是问题 81 中示例的解决方案。我使用了包networkx和jupyter notebook:import networkx as nximport numpy as npimport collectionsa = np.matrix("""131 673 234 103 18; 201 96 342 965 150; 630 803 746 422 111; 537 699 497 121 956; 805 732 524 37 331""")rows, columns = a.shape# Part of @AustinHastings solutiongraph = collections.defaultdict(list)for r in range(rows): for c in range(columns): if c < columns - 1: # get the right neighbor graph[(r, c)].append((r, c+1)) if r < rows - 1: # get the bottom neighbor graph[(r, c)].append((r+1, c))G = nx.from_dict_of_lists(graph, create_using=nx.DiGraph)weights = {(row, col): {'weight': num} for row, r in enumerate(a.tolist()) for col, num in enumerate(r)}nx.set_node_attributes(G, values=weights)def weight(u, v, d): return G.nodes[u].get('weight')/2 + G.nodes[v].get('weight')/2target = tuple(i - 1 for i in a.shape)path = nx.dijkstra_path(G, source=(0, 0), target=target, weight=weight)print('Path: ', [a.item(i) for i in path])%matplotlib inlinecolor_map = ['green' if n in path else 'red' for n in G.nodes()]labels = nx.get_node_attributes(G, 'weight')pos = {(r, c): (c, -r) for r, c in G.nodes()}nx.draw(G, pos=pos, with_labels=True, node_size=1500, labels = labels, node_color=color_map)输出:Path: [131, 201, 96, 342, 746, 422, 121, 37, 331]