我有一个用 Keras 编写的自动编码器,如下所示。我收到以下错误,不知道如何解决,有什么想法吗?
ValueError:检查输入时出错:预期 input_1 具有形状 (None, 65563) 但得到的数组具有形状 (374, 65536)
from keras.layers import Input, Dense, Flatten
from keras.models import Model
from keras.preprocessing.image import img_to_array
import cv2
import numpy
import os
training_directory = '/training'
validation_directory ='/validation'
results_directory = '/results'
training_images = []
validation_images = []
# the size of the encoded represenatation
encoding_dimension = 784
# input placeholder
input_image = Input(shape=(65563,))
# the encoded representation of the input
encoded = Dense(encoding_dimension,activation='relu')(input_image)
# reconstruction of the input (lossy)
decoded = Dense(65563,activation='sigmoid')(encoded)
# map the input image to its reconstruction
autoencoder = Model(input_image,decoded)
# encoder model
# map an input image to its encoded representation
encoder = Model(input_image,encoded)
# decoder model
# place holder fpr an encoded input
encoded_input = Input(shape=(encoding_dimension,))
# retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
# create the decoder model
decoder = Model(encoded_input,decoder_layer(encoded_input))
for root, dirs, files in os.walk(training_directory):
for file in files:
image = cv2.imread(root + '/' + file)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = img_to_array(image)
training_images.append(image)
training_images = numpy.array(training_images)
for root, dirs, files in os.walk(validation_directory):
for file in files:
image = cv2.imread(root + '/' + file)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = img_to_array(image)
validation_images.append(image)
validation_images = numpy.array(validation_images)
谢谢。
拉丁的传说
相关分类