背景:
我有一个从数据库中获取一堆属性的函数。这是函数:
def getData(key, full_name, address, city, state, zipcode):
try:
url = 'https://personator.melissadata.net/v3/WEB/ContactVerify/doContactVerify'
payload={
'TransmissionReference': "test", # used by you to keep track of reference
'Actions': 'Check',
'Columns': 'Gender','DateOfBirth','DateOfDeath','EthnicCode','EthnicGroup','Education','PoliticalParty','MaritalStatus','HouseholdSize','ChildrenAgeRange','PresenceOfChildren','PresenceOfSenior','LengthOfResidence','OwnRent','CreditCardUser','Occupation','HouseholdIncome',
'CustomerID': key,# key
'Records': [{'FullName': str(full_name), 'AddressLine1': str(address), 'City': str(city), 'State': str(state), 'PostalCode': str(zipcode)}]
}
headers = {'Content-Type': 'application/json; charset=utf-8', 'Accept':'application/json', 'Host':'personator.melissadata.net','Expect': '100-continue', 'Connection':'Keep-Alive'}
r = requests.post(url, data=json.dumps(payload), headers=headers)
为了制作“性别”列,我将函数包装成一个 lambda
df['Gender'] = df.apply(lambda row: getData(key, row['Full Name'], row['Address'], row['City'], row['State'], row['Zipcode']))
目标: 我想对您在 Gender 下方看到的所有其他属性同时执行此过程,我如何在 Python 中执行此操作。
心有法竹
相关分类