如何提高scikit-learn中预测的准确性

我想根据3 个特征和1 个目标预测一个参数。这是我的输入文件(data.csv):


feature.1   feature.2   feature.3   target

    1           1          1        0.0625

    0.5         0.5        0.5      0.125

    0.25        0.25       0.25     0.25

    0.125       0.125      0.125    0.5

    0.0625      0.0625     0.0625   1

这是我的代码:


import pandas as pd

from sklearn.model_selection import train_test_split

from collections import *

from sklearn.linear_model import LinearRegression


features = pd.read_csv('data.csv')


features.head()

features_name = ['feature.1' , 'feature.2' , 'feature.3']

target_name = ['target']


X = features[features_name]

y = features[target_name]


# Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state = 42)


linear_regression_model = LinearRegression()

linear_regression_model.fit(X_train,y_train)


#Here is where I want to predict the target value for these inputs for 3 features

new_data  = OrderedDict([('feature.1',0.375) ,('feature.2',0.375),('feature.3',0.375) ])


new_data = pd.Series(new_data).values.reshape(1,-1)

ss = linear_regression_model.predict(new_data)

print (ss)

根据趋势,如果我将 0.375 作为所有特征的输入,我希望得到大约 0.1875 的值。但是代码预测了这一点:


[[0.44203368]]

这是不正确的。我不知道问题出在哪里。有人知道我该如何解决吗?


holdtom
浏览 294回答 1
1回答
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python