Keras 错误:TypeError:'int' 对象不可迭代

CONST_TRAINTING_SEQUENCE_LENGTH = 12


CONST_TESTING_CASES = 5



def dataNormalization(data):

    return [(datum - data[0]) / data[0] for datum in data]



def dataDeNormalization(data, base):

    return [(datum + 1) * base for datum in data]



def getDeepLearningData(ticker):

    # Step 1. Load data

    data = pandas.read_csv('/Users/yindeyong/Desktop/Django_Projects/pythonstock/data/Intraday/' + ticker + '.csv')[

        'close'].tolist()


    # Step 2. Building Training data

    dataTraining = []

    for i in range(len(data) - CONST_TESTING_CASES * CONST_TRAINTING_SEQUENCE_LENGTH):

        dataSegment = data[i:i + CONST_TRAINTING_SEQUENCE_LENGTH + 1]

        dataTraining.append(dataNormalization(dataSegment))


    dataTraining = numpy.array(dataTraining)

    numpy.random.shuffle(dataTraining)

    X_Training = dataTraining[:, :-1]

    Y_Training = dataTraining[:, -1]


    # Step 3. Building Testing data

    X_Testing = []

    Y_Testing_Base = []

    for i in range(CONST_TESTING_CASES, 0, -1):

        dataSegment = data[-(i + 1) * CONST_TRAINTING_SEQUENCE_LENGTH:-i * CONST_TRAINTING_SEQUENCE_LENGTH]

        Y_Testing_Base.append(dataSegment[0])

        X_Testing.append(dataNormalization(dataSegment))


    Y_Testing = data[-CONST_TESTING_CASES * CONST_TRAINTING_SEQUENCE_LENGTH:]


    X_Testing = numpy.array(X_Testing)

    Y_Testing = numpy.array(Y_Testing)


    # Step 4. Reshape for deep learning

    X_Training = numpy.reshape(X_Training, (X_Training.shape[0], X_Training.shape[1], 1))


我有一个错误:


文件“/Users/yindeyong/Desktop/Django_Projects/envs/stockenv/lib/python3.6/site-packages/keras/engine/base_layer.py”,第147行,在init batch_size中,) + tuple(kwargs['input_shape' ]) TypeError: 'int' 对象不可迭代


我试图将input_shape=1更改 为input_shape=(1,),然后又出现了另一个错误:


ValueError:输入 0 与层 lstm_1 不兼容:预期 ndim=3,发现 ndim=2


慕工程0101907
浏览 191回答 2
2回答

红颜莎娜

LSTM 是处理序列的循环网络序列必须具有length和features,您的输入形状必须包含以下两个:input_shape=(length, features).您的数据也必须相应地进行整形,使用(sequences, length, features).对于可变长度,您可以使用input_shape=(None,features).

汪汪一只猫

您不能传递input_shape整数,它必须是可迭代的,例如(1,). 看起来你的 X_training 形状不对。您必须重塑它,使其适合 input_shape。
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python