对不起我的英文很差=。=
我创建了一个 keras 模型并使用tf.keras.estimator.model_to_estimatorconvert to estimator 但该模型是多输入的,我可以创建什么数据集来提供数据?
这是我的模型代码:
model = VGG19(include_top=False, input_shape=(182, 182 , 3))
y = model.output
y = keras.layers.Flatten()(y)
y = keras.layers.Dense(512, activation='relu')(y)
y = keras.layers.Dense(256, activation='relu')(y)
y = keras.layers.Dense(128, activation='relu')(y)
model = keras.Model(inputs=model.input, outputs=y)
input_image = keras.layers.Input(shape=(182, 182, 3))
input_anchor = keras.layers.Input(shape=(182, 182, 3))
out_image = model(input_image)
out_anchor = model(input_anchor)
out = keras.layers.concatenate([out_image, out_anchor])
out = keras.layers.Dense(1, activation='sigmoid')(out)
img_model = keras.Model([input_image, input_anchor], out)
face_model.compile(optimizer=tf.train.AdamOptimizer(1e-4, loss='binary_crossentropy', metrics=['accuracy'])
distribution = tf.contrib.distribute.CollectiveAllReduceStrategy(num_gpus_per_worker=0)
config = tf.estimator.RunConfig(model_dir='/home/zjq/test/image_model.h5', train_distribute=distribution)
est_model = tf.keras.estimator.model_to_estimator(keras_model=image_model, config=config)
现在,我有一个输入列表,形状是[(100000, 182, 182, 3), (100000, 182, 182, 3), (100000, 1)],如何定义输入函数返回tf.data。数据集?
相关分类