湖上湖
理论上,非完全仿射设置只需要 2 对点,正如 ngia ho所解释的那样。但是,在检查 openCV 中的源代码时,该函数至少需要 3 个对点才能返回由 RANSAC 计算的值。我在下面包含了相应的功能供您参考。它位于 openCV 源文件中的 lkpyramid.cpp 文件中。cv::Mat cv::estimateRigidTransform( InputArray src1, InputArray src2, bool fullAffine ){ return estimateRigidTransform(src1, src2, fullAffine, 500, 0.5, 3);}cv::Mat cv::estimateRigidTransform( InputArray src1, InputArray src2, bool fullAffine, int ransacMaxIters, double ransacGoodRatio, const int ransacSize0){ CV_INSTRUMENT_REGION() Mat M(2, 3, CV_64F), A = src1.getMat(), B = src2.getMat(); const int COUNT = 15; const int WIDTH = 160, HEIGHT = 120; std::vector<Point2f> pA, pB; std::vector<int> good_idx; std::vector<uchar> status; double scale = 1.; int i, j, k, k1; RNG rng((uint64)-1); int good_count = 0; if( ransacSize0 < 3 ) CV_Error( Error::StsBadArg, "ransacSize0 should have value bigger than 2."); if( ransacGoodRatio > 1 || ransacGoodRatio < 0) CV_Error( Error::StsBadArg, "ransacGoodRatio should have value between 0 and 1"); if( A.size() != B.size() ) CV_Error( Error::StsUnmatchedSizes, "Both input images must have the same size" ); if( A.type() != B.type() ) CV_Error( Error::StsUnmatchedFormats, "Both input images must have the same data type" ); int count = A.checkVector(2); if( count > 0 ) { A.reshape(2, count).convertTo(pA, CV_32F); B.reshape(2, count).convertTo(pB, CV_32F); } else if( A.depth() == CV_8U ) { int cn = A.channels(); CV_Assert( cn == 1 || cn == 3 || cn == 4 ); Size sz0 = A.size(); Size sz1(WIDTH, HEIGHT); scale = std::max(1., std::max( (double)sz1.width/sz0.width, (double)sz1.height/sz0.height )); sz1.width = cvRound( sz0.width * scale ); sz1.height = cvRound( sz0.height * scale ); bool equalSizes = sz1.width == sz0.width && sz1.height == sz0.height; if( !equalSizes || cn != 1 ) { Mat sA, sB; if( cn != 1 ) { Mat gray; cvtColor(A, gray, COLOR_BGR2GRAY); resize(gray, sA, sz1, 0., 0., INTER_AREA); cvtColor(B, gray, COLOR_BGR2GRAY); resize(gray, sB, sz1, 0., 0., INTER_AREA); } else { resize(A, sA, sz1, 0., 0., INTER_AREA); resize(B, sB, sz1, 0., 0., INTER_AREA); } A = sA; B = sB; } int count_y = COUNT; int count_x = cvRound((double)COUNT*sz1.width/sz1.height); count = count_x * count_y; pA.resize(count); pB.resize(count); status.resize(count); for( i = 0, k = 0; i < count_y; i++ ) for( j = 0; j < count_x; j++, k++ ) { pA[k].x = (j+0.5f)*sz1.width/count_x; pA[k].y = (i+0.5f)*sz1.height/count_y; } // find the corresponding points in B calcOpticalFlowPyrLK(A, B, pA, pB, status, noArray(), Size(21, 21), 3, TermCriteria(TermCriteria::MAX_ITER,40,0.1)); // repack the remained points for( i = 0, k = 0; i < count; i++ ) if( status[i] ) { if( i > k ) { pA[k] = pA[i]; pB[k] = pB[i]; } k++; } count = k; pA.resize(count); pB.resize(count); } else CV_Error( Error::StsUnsupportedFormat, "Both input images must have either 8uC1 or 8uC3 type" ); good_idx.resize(count); if( count < ransacSize0 ) return Mat(); Rect brect = boundingRect(pB); std::vector<Point2f> a(ransacSize0); std::vector<Point2f> b(ransacSize0); // RANSAC stuff: // 1. find the consensus for( k = 0; k < ransacMaxIters; k++ ) { std::vector<int> idx(ransacSize0); // choose random 3 non-complanar points from A & B for( i = 0; i < ransacSize0; i++ ) { for( k1 = 0; k1 < ransacMaxIters; k1++ ) { idx[i] = rng.uniform(0, count); for( j = 0; j < i; j++ ) { if( idx[j] == idx[i] ) break; // check that the points are not very close one each other if( fabs(pA[idx[i]].x - pA[idx[j]].x) + fabs(pA[idx[i]].y - pA[idx[j]].y) < FLT_EPSILON ) break; if( fabs(pB[idx[i]].x - pB[idx[j]].x) + fabs(pB[idx[i]].y - pB[idx[j]].y) < FLT_EPSILON ) break; } if( j < i ) continue; if( i+1 == ransacSize0 ) { // additional check for non-complanar vectors a[0] = pA[idx[0]]; a[1] = pA[idx[1]]; a[2] = pA[idx[2]]; b[0] = pB[idx[0]]; b[1] = pB[idx[1]]; b[2] = pB[idx[2]]; double dax1 = a[1].x - a[0].x, day1 = a[1].y - a[0].y; double dax2 = a[2].x - a[0].x, day2 = a[2].y - a[0].y; double dbx1 = b[1].x - b[0].x, dby1 = b[1].y - b[0].y; double dbx2 = b[2].x - b[0].x, dby2 = b[2].y - b[0].y; const double eps = 0.01; if( fabs(dax1*day2 - day1*dax2) < eps*std::sqrt(dax1*dax1+day1*day1)*std::sqrt(dax2*dax2+day2*day2) || fabs(dbx1*dby2 - dby1*dbx2) < eps*std::sqrt(dbx1*dbx1+dby1*dby1)*std::sqrt(dbx2*dbx2+dby2*dby2) ) continue; } break; } if( k1 >= ransacMaxIters ) break; } if( i < ransacSize0 ) continue; // estimate the transformation using 3 points getRTMatrix( a, b, 3, M, fullAffine ); const double* m = M.ptr<double>(); for( i = 0, good_count = 0; i < count; i++ ) { if( std::abs( m[0]*pA[i].x + m[1]*pA[i].y + m[2] - pB[i].x ) + std::abs( m[3]*pA[i].x + m[4]*pA[i].y + m[5] - pB[i].y ) < std::max(brect.width,brect.height)*0.05 ) good_idx[good_count++] = i; } if( good_count >= count*ransacGoodRatio ) break; } if( k >= ransacMaxIters ) return Mat(); if( good_count < count ) { for( i = 0; i < good_count; i++ ) { j = good_idx[i]; pA[i] = pA[j]; pB[i] = pB[j]; } } getRTMatrix( pA, pB, good_count, M, fullAffine ); M.at<double>(0, 2) /= scale; M.at<double>(1, 2) /= scale; return M;}