我正在尝试准备一个模型,该模型采用形状为 56x56 像素和 3 个通道的输入图像:(56, 56, 3)。输出应该是一个包含 216 个数字的数组。我重用了来自数字识别器的代码并对其进行了一些修改:
model = Sequential()
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same',
activation ='relu', input_shape = (56,56,3)))
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(216, activation = "linear"))
from tensorflow.python.keras.losses import categorical_crossentropy
model.compile(loss = categorical_crossentropy,
optimizer = "adam",
metrics = ['accuracy'])
这给了我一个错误:
ValueError: Error when checking target: expected dense_1 to have shape (216,) but got array with shape (72,)
我知道如何编码分类器模型但不获取数组作为输出,所以可能我没有在最后一个 Dense 层中设置正确的形状。我不知道它应该是 1 还是 216。
我在这篇文章中读到问题可能是损失函数,但我不确定我应该使用什么其他损失函数。
ABOUTYOU
慕的地10843
相关分类