慕容3067478
如果存在矢量化解决方案,在 Pandas 中最好避免循环(应用是引擎盖下的循环),因为循环很慢。我尝试重写您的代码 - 创建带有输出和值列表的字典,用值交换键并调用map,最后为不匹配的值添加fillna:d = {'Residential' :['Multifamily Housing', 'Residence Hall/Dormitory'], 'Commercial' : ['Bank Branch', 'Hotel' , 'Financial Office' , 'Retail Store', 'Distribution Center', 'Non-Refrigerated Warehouse', 'Fitness Center/Health Club/Gym', 'Mixed Use Property', 'Self-Storage Facility', 'Wholesale Club/Supercenter', 'Supermarket/Grocery Store'], 'Institutional':['Senior Care Community', 'K-12 School', 'College/University', 'Worship Facility', 'Medical Office', 'Hospital (General Medical & Surgical)'], 'Industrial': ['Manufacturing/Industrial Plant'] }d1 = {k: oldk for oldk, oldv in d.items() for k in oldv}print (d1){ 'Multifamily Housing': 'Residential', 'Residence Hall/Dormitory': 'Residential', 'Bank Branch': 'Commercial', 'Hotel': 'Commercial', 'Financial Office': 'Commercial', 'Retail Store': 'Commercial', 'Distribution Center': 'Commercial', 'Non-Refrigerated Warehouse': 'Commercial', 'Fitness Center/Health Club/Gym': 'Commercial', 'Mixed Use Property': 'Commercial', 'Self-Storage Facility': 'Commercial', 'Wholesale Club/Supercenter': 'Commercial', 'Supermarket/Grocery Store': 'Commercial', 'Senior Care Community': 'Institutional', 'K-12 School': 'Institutional', 'College/University': 'Institutional', 'Worship Facility': 'Institutional', 'Medical Office': 'Institutional', 'Hospital (General Medical & Surgical)': 'Institutional', 'Manufacturing/Industrial Plant': 'Industrial'}datav3 = pd.DataFrame({'Program':['Medical Office','Hotel', 'Residence Hall/Dormitory', 'Manufacturing/Industrial Plant','House']})datav3['Program Type'] = datav3['Program'].map(d1).fillna('Other')print (datav3) Program Program Type0 Medical Office Institutional1 Hotel Commercial2 Residence Hall/Dormitory Residential3 Manufacturing/Industrial Plant Industrial4 House Other