我想在 LSTM 自动编码器之上添加一个乘法层。乘法层应该将张量乘以一个常数值。我编写了以下代码,无需乘法层即可工作。有谁知道如何调整并使其工作?
import keras
from keras import backend as K
from keras.models import Sequential, Model
from keras.layers import Input, LSTM, RepeatVector, TimeDistributed
from keras.layers.core import Flatten, Dense, Dropout, Lambda
from keras.optimizers import SGD, RMSprop, Adam
from keras import objectives
from keras.engine.topology import Layer
import numpy as np
class LayerKMultiply(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
self.k = Null
super(LayerKMultiply, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.k = self.add_weight(
name='k',
shape=(),
initializer='ones',
dtype='float32',
trainable=True,
)
super(LayerKMultiply, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
#return K.tf.multiply(self.k, x)
return self.k * x
def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)
timesteps, input_dim, latent_dim = 10, 3, 32
inputs = Input(shape=(timesteps, input_dim))
encoded = LSTM(latent_dim, return_sequences=False, activation='linear')(inputs)
decoded = RepeatVector(timesteps)(encoded)
decoded = LSTM(input_dim, return_sequences=True, activation='linear')(decoded)
decoded = TimeDistributed(Dense(input_dim, activation='linear'))(decoded)
#decoded = LayerKMultiply(k = 20)(decoded)
sequence_autoencoder = Model(inputs, decoded)
encoder = Model(inputs, encoded)
autoencoder = Model(inputs, decoded)
autoencoder.compile(optimizer='adam', loss='mse')
X = np.array([[[1,2,3,4,5,6,7,8,9,10],[1,2,3,4,5,6,7,8,9,10],[1,2,3,4,5,6,7,8,9,10]]])
X = X.reshape(1,10,3)
p = autoencoder.predict(x=X, batch_size=1)
print(p)
侃侃无极
墨色风雨
相关分类