合并多个CNN

我正在尝试对Conv1D模型中的多个输入执行。所以我有 15 个大小为 1x1500 的输入,其中每个输入都是一系列层的输入。所以我有 15 个卷积模型,我想在全连接层之前合并它们。我已经在一个函数中定义了卷积模型,但是我无法理解如何调用该函数然后将它们合并。


def defineModel(nkernels, nstrides, dropout, input_shape):

    model = Sequential()

    model.add(Conv1D(nkernels, nstrides, activation='relu', input_shape=input_shape))

    model.add(Conv1D(nkernels*2, nstrides, activation='relu'))

    model.add(BatchNormalization())

    model.add(MaxPooling1D(nstrides))

    model.add(Dropout(dropout))

    return model



models = {}

for i in range(15):

    models[i] = defineModel(64,2,0.75,(64,1))

我已经成功地连接了 4 个模型,如下所示:


merged = Concatenate()([ model1.output, model2.output, model3.output, model4.output])


merged = Dense(512, activation='relu')(merged)

merged = Dropout(0.75)(merged)

merged = Dense(1024, activation='relu')(merged)

merged = Dropout(0.75)(merged)

merged = Dense(40, activation='softmax')(merged)

model = Model(inputs=[model1.input, model2.input, model3.input, model4.input], outputs=merged)

由于单独编写 15 层效率不高,我如何在 for 循环中为 15 层执行此操作?


德玛西亚99
浏览 317回答 2
2回答

呼啦一阵风

我认为你能做的最好的事情就是在任何地方使用函数式 API:def defineModel(nkernels, nstrides, dropout, input_shape):    l_input = Input( shape=input_shape )    model = Conv1D(nkernels, nstrides, activation='relu')(l_input)    model = Conv1D(nkernels*2, nstrides, activation='relu')(model)    model = BatchNormalization()(model)    model = MaxPooling1D(nstrides)(model)    model = Dropout(dropout)(model)    return model, l_inputmodels = []inputs = []for i in range(15):    model, input = defineModel(64,2,0.75,(64,1))    models.append( model )    inputs.append( input )然后很容易恢复子模型的输入和输出列表并合并它们merged = Concatenate()(models)merged = Dense(512, activation='relu')(merged)merged = Dropout(0.75)(merged)merged = Dense(1024, activation='relu')(merged)merged = Dropout(0.75)(merged)merged = Dense(40, activation='softmax')(merged)model = Model(inputs=inputs, outputs=merged)通常,这些操作不是瓶颈。这些都不应该在训练或推理过程中产生重大影响

幕布斯6054654

当然,正如@GabrielM 建议的那样,使用函数式 API 是最好的方法,但是如果你不想修改define_model函数,你也可以这样做:models = []inputs = []outputs = []for i in range(15):    model = defineModel(64,2,0.75,(64,1))    models.append(model)    inputs.append(model.input)    outputs.append(model.output)merged = Concatenate()(outputs) # this should be output tensors and not models# the rest is the same ...model = Model(inputs=inputs, outputs=merged)
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

Python