我正在 PySpark 数据框中处理一些深度嵌套的数据。当我试图将结构展平为行和列时,我注意到当我调用withColumn该行是否包含null在源列中时,该行将从我的结果数据框中删除。相反,我想找到一种方法来保留该行并null在结果列中包含该行。
要使用的示例数据框:
from pyspark.sql.functions import explode, first, col, monotonically_increasing_id
from pyspark.sql import Row
df = spark.createDataFrame([
Row(dataCells=[Row(posx=0, posy=1, posz=.5, value=1.5, shape=[Row(_type='square', _len=1)]),
Row(posx=1, posy=3, posz=.5, value=4.5, shape=[]),
Row(posx=2, posy=5, posz=.5, value=7.5, shape=[Row(_type='circle', _len=.5)])
])
])
我还有一个用来压平结构的函数:
def flatten_struct_cols(df):
flat_cols = [column[0] for column in df.dtypes if 'struct' not in column[1][:6]]
struct_columns = [column[0] for column in df.dtypes if 'struct' in column[1][:6]]
df = df.select(flat_cols +
[col(sc + '.' + c).alias(sc + '_' + c)
for sc in struct_columns
for c in df.select(sc + '.*').columns])
return df
架构如下所示:
df.printSchema()
root
|-- dataCells: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- posx: long (nullable = true)
| | |-- posy: long (nullable = true)
| | |-- posz: double (nullable = true)
| | |-- shape: array (nullable = true)
| | | |-- element: struct (containsNull = true)
| | | | |-- _len: long (nullable = true)
| | | | |-- _type: string (nullable = true)
| | |-- value: double (nullable = true)
相关分类