我是 tensorflow keras 和数据集的新手。谁能帮我理解为什么下面的代码不起作用?
import tensorflow as tf
import tensorflow.keras as keras
import numpy as np
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.keras.utils import multi_gpu_model
from tensorflow.python.keras import backend as K
data = np.random.random((1000,32))
labels = np.random.random((1000,10))
dataset = tf.data.Dataset.from_tensor_slices((data,labels))
print( dataset)
print( dataset.output_types)
print( dataset.output_shapes)
dataset.batch(10)
dataset.repeat(100)
inputs = keras.Input(shape=(32,)) # Returns a placeholder tensor
# A layer instance is callable on a tensor, and returns a tensor.
x = keras.layers.Dense(64, activation='relu')(inputs)
x = keras.layers.Dense(64, activation='relu')(x)
predictions = keras.layers.Dense(10, activation='softmax')(x)
# Instantiate the model given inputs and outputs.
model = keras.Model(inputs=inputs, outputs=predictions)
# The compile step specifies the training configuration.
model.compile(optimizer=tf.train.RMSPropOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
# Trains for 5 epochs
model.fit(dataset, epochs=5, steps_per_epoch=100)
幕布斯7119047
相关分类