网络就像
inp=Input((1,12))
dense0=GRU(200,activation='relu',recurrent_dropout=0.2,return_sequences=True)(inp)
drop0=Dropout(0.3)(dense1)
dense1=GRU(200,activation='relu',recurrent_dropout=0.2)(drop0)
drop1=Dropout(0.3)(dense1)
dense1=Dense(200,activation='relu')(inp)
drop1=Dropout(0.3)(dense1)
dense2=Dense(200,activation='relu')(drop1)
drop2=Dropout(0.3)(dense2)
dense3=Dense(100,activation='relu')(drop2)
drop3=Dropout(0.3)(dense3)
out=Dense(6,activation='relu')(drop2)
md=Model(inputs=inp,outputs=out)
##md.summary()
opt=keras.optimizers.rmsprop(lr=0.000005)
md.compile(opt,loss='mean_squared_error')
esp=EarlyStopping(patience=90, verbose=1, mode='auto')
md.fit(x_train.reshape((8105,1,12)),y_train.reshape((8105,1,6)),batch_size=2048,epochs=1500,callbacks=[esp], validation_split=0.2)
输出:
Epoch 549/1500
6484/6484 [==============================] - 0s 13us/step - loss: 0.0589 - val_loss: 0.0100
Epoch 550/1500
6484/6484 [==============================] - 0s 10us/step - loss: 0.0587 - val_loss: 0.0099
Epoch 551/1500
6484/6484 [==============================] - 0s 12us/step - loss: 0.0584 - val_loss: 0.0100
Epoch 552/1500
6484/6484 [==============================] - 0s 12us/step - loss: 0.0593 - val_loss: 0.0100
Epoch 553/1500
6484/6484 [==============================] - 0s 12us/step - loss: 0.0584 - val_loss: 0.0100
Epoch 554/1500
6484/6484 [==============================] - 0s 15us/step - loss: 0.0587 - val_loss: 0.0101
Epoch 555/1500
6484/6484 [==============================] - 0s 12us/step - loss: 0.0583 - val_loss: 0.0100
Epoch 556/1500
6484/6484 [==============================] - 0s 13us/step - loss: 0.0578 - val_loss: 0.0101
相关分类