import numpy as np
import pandas as pd
dataset=pd.read_csv("/Users/rushirajparmar/Downloads/Social_network_Ads.csv",error_bad_lines = False)
X = dataset.iloc[:,[2,3]].values.
Y = dataset.iloc[:,4].values
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size = 0.25,random_state = 0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_train,Y_train)
y_pred = classifier.fit(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(Y_test, y_pred)
我刚开始练习 LogisticRegression 时出现此错误。我不明白出了什么问题。我尝试在互联网上搜索它,但没有帮助
y_pred = classifier.fit(X_test).values.ravel()
TypeError: fit() missing 1 required positional argument: 'y'
下面是数据集的链接:
https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/datasets/Social_Network_Ads.csv
相关分类