我从CNTK的培训师/进步作家那里得到了输出,告诉我,我的准确度> 99%,而实际上是0.5%左右。根据这个指标的确意味着损失,但是得知我不正确地使用了CNTK的训练器/损失功能并不奇怪,这并不会让我感到惊讶。
这是下面示例的示例输出(与我的模型不同,但产生了相似的效果):
-------------------------------------------------------------------
Finished Epoch[1 of 20]: [Training] loss = 2.302585 * 100, metric = 48.10% * 100 0.802s (124.7 samples/s);
Accuracy % 11.0
Finished Epoch[2 of 20]: [Training] loss = 2.302514 * 100, metric = 49.82% * 100 0.043s (2325.6 samples/s);
Accuracy % 15.0
这是一个最小的工作示例,演示了真实准确度与度量标准所报告的真实度之间的差异。我编写了一个小的精度函数来对其进行测试,我敢肯定它可以正确实现。
import cntk as C
import numpy as np
from cntk.ops import relu
from cntk.layers import Dense, Convolution2D
minibatchSize = 100
def printAccuracy(net, X, Y):
outs = net(X)
pred = np.argmax(Y, 1)
indx = np.argmax(outs, 1)
same = pred == indx
print("Accuracy %", np.sum(same)/minibatchSize*100)
outputs = 10
input_var = C.input_variable((7, 19, 19), name='features')
label_var = C.input_variable((outputs))
epochs = 20
cc = C.layers.Convolution2D((3,3), 64, activation=relu)(input_var)
net = C.layers.Dense(outputs)(cc)
loss = C.cross_entropy_with_softmax(net, label_var)
pe = C.classification_error(net, label_var)
learner = C.adam(net.parameters, 0.0018, 0.9, minibatch_size=minibatchSize)
progressPrinter = C.logging.ProgressPrinter(tag='Training', num_epochs=epochs)
trainer = C.Trainer(net, (loss, pe), learner, progressPrinter)
for i in range(epochs):
X = np.zeros((minibatchSize, 7, 19, 19), dtype=np.float32)
Y = np.random.rand(minibatchSize, outputs)
trainer.train_minibatch({input_var : X, label_var : Y})
trainer.summarize_training_progress()
printAccuracy(net, X, Y)
胡子哥哥
相关分类