我有两个CSV文件,我正在比较并仅并排返回具有不同值的列。
df1
Country 1980 1981 1982 1983 1984
Bermuda 0.00793 0.00687 0.00727 0.00971 0.00752
Canada 9.6947 9.58952 9.20637 9.18989 9.78546
Greenland 0.00791 0.00746 0.00722 0.00505 0.00799
Mexico 3.72819 4.11969 4.33477 4.06414 4.18464
df2
Country 1980 1981 1982 1983 1984
Bermuda 0.77777 0.00687 0.00727 0.00971 0.00752
Canada 9.6947 9.58952 9.20637 9.18989 9.78546
Greenland 0.00791 0.00746 0.00722 0.00505 0.00799
Mexico 3.72819 4.11969 4.33477 4.06414 4.18464
import pandas as pd
import numpy as np
df1=pd.read_csv('csv1.csv')
df2=pd.read_csv('csv2.csv')
def diff_pd(df1, df2):
"""Identify differences between two pandas DataFrames"""
assert (df1.columns == df2.columns).all(), \
"DataFrame column names are different"
if any(df1.dtypes != df2.dtypes):
"Data Types are different, trying to convert"
df2 = df2.astype(df1.dtypes)
if df1.equals(df2):
print("Dataframes are the same")
return None
else:
# need to account for np.nan != np.nan returning True
diff_mask = (df1 != df2) & ~(df1.isnull() & df2.isnull())
ne_stacked = diff_mask.stack()
changed = ne_stacked[ne_stacked]
changed.index.names = ['Country', 'Column']
difference_locations = np.where(diff_mask)
changed_from = df1.values[difference_locations][0]
changed_to = df2.values[difference_locations]
y=pd.DataFrame({'From': changed_from, 'To': changed_to},
index=changed.index)
print(y)
return pd.DataFrame({'From': changed_from, 'To': changed_to},
index=changed.index)
diff_pd(df1,df2)
我当前的输出是:
From To
Country Column
0 1980 0.00793 0.77777
因此,我想获得索引值不匹配的行的国家/地区名称,而不是索引0。下面是一个例子。
我希望我的输出是:
From To
Country Column
Bermuda 1980 0.00793 0.77777
谢谢所有能提供解决方案的人。
函数式编程
相关分类