我有一个这样的数据框:
df = pd.DataFrame({'timestamp':pd.date_range('2018-01-01', '2018-01-02', freq='2h', closed='right'),'col1':[np.nan, np.nan, np.nan, 1,2,3,4,5,6,7,8,np.nan], 'col2':[np.nan, np.nan, 0, 1,2,3,4,5,np.nan,np.nan,np.nan,np.nan], 'col3':[np.nan, -1, 0, 1,2,3,4,5,6,7,8,9], 'col4':[-2, -1, 0, 1,2,3,4,np.nan,np.nan,np.nan,np.nan,np.nan]
})[['timestamp', 'col1', 'col2', 'col3', 'col4']]
看起来像这样:
timestamp col1 col2 col3 col4
0 2018-01-01 02:00:00 NaN NaN NaN -2.0
1 2018-01-01 04:00:00 NaN NaN -1.0 -1.0
2 2018-01-01 06:00:00 NaN 0.0 NaN 0.0
3 2018-01-01 08:00:00 1.0 1.0 1.0 1.0
4 2018-01-01 10:00:00 2.0 NaN 2.0 2.0
5 2018-01-01 12:00:00 3.0 3.0 NaN 3.0
6 2018-01-01 14:00:00 NaN 4.0 4.0 4.0
7 2018-01-01 16:00:00 5.0 NaN 5.0 NaN
8 2018-01-01 18:00:00 6.0 NaN 6.0 NaN
9 2018-01-01 20:00:00 7.0 NaN 7.0 NaN
10 2018-01-01 22:00:00 8.0 NaN 8.0 NaN
11 2018-01-02 00:00:00 NaN NaN 9.0 NaN
现在,我想找到一种有效且有效的方法来删除第一个有效索引之前和之后的有效索引(对于每一列!不计算时间戳)。在此示例中,我有4列,但实际上,我有更多列,大约600列。我正在寻找一种方法来斩波第一个有效索引之前的所有NaN值,以及最后一个有效索引之后的所有NaN值。
我猜一种方法是循环遍历。但是还有更好的方法吗?这种方式必须有效。我试图使用melt“取消透视图”数据框,但这无济于事。
明显的一点是,斩波后每一列的行数会有所不同。因此,我希望结果是一个带有时间戳和相关列的数据帧列表(每列一个)。例如:
timestamp col1
3 2018-01-01 08:00:00 1.0
4 2018-01-01 10:00:00 2.0
5 2018-01-01 12:00:00 3.0
6 2018-01-01 14:00:00 NaN
7 2018-01-01 16:00:00 5.0
8 2018-01-01 18:00:00 6.0
9 2018-01-01 20:00:00 7.0
10 2018-01-01 22:00:00 8.0
我的尝试
我这样尝试过:
final = []
columns = [c for c in df if c !='timestamp']
for col in columns:
first = df.loc[:, col].first_valid_index()
last = df.loc[:, col].last_valid_index()
final.append(df.loc[:, ['timestamp', col]].iloc[first:last+1, :])
慕田峪7331174
慕村225694
精慕HU
相关分类