暮色呼如
我假设您是在询问组合意义上的组合(也就是说,元素的顺序无关紧要,所以[1 2 3]与相同[2 1 3])。然后,这个想法非常简单,如果您了解归纳/递归:要获取所有K元素组合,请先从现有人员中选择组合的初始元素,然后将该初始元素与所有可能的组合“连接” K-1人们从继承最初元素的元素中产生出来。举例来说,假设我们要从一组5个人中抽取3个人的所有组合。然后,可以用2个人的所有可能组合来表示3个人的所有可能组合:comb({ 1 2 3 4 5 }, 3) ={ 1, comb({ 2 3 4 5 }, 2) } and{ 2, comb({ 3 4 5 }, 2) } and{ 3, comb({ 4 5 }, 2) }这是实现此想法的C ++代码:#include <iostream>#include <vector>using namespace std;vector<int> people;vector<int> combination;void pretty_print(const vector<int>& v) { static int count = 0; cout << "combination no " << (++count) << ": [ "; for (int i = 0; i < v.size(); ++i) { cout << v[i] << " "; } cout << "] " << endl;}void go(int offset, int k) { if (k == 0) { pretty_print(combination); return; } for (int i = offset; i <= people.size() - k; ++i) { combination.push_back(people[i]); go(i+1, k-1); combination.pop_back(); }}int main() { int n = 5, k = 3; for (int i = 0; i < n; ++i) { people.push_back(i+1); } go(0, k); return 0;}这是输出N = 5, K = 3:combination no 1: [ 1 2 3 ] combination no 2: [ 1 2 4 ] combination no 3: [ 1 2 5 ] combination no 4: [ 1 3 4 ] combination no 5: [ 1 3 5 ] combination no 6: [ 1 4 5 ] combination no 7: [ 2 3 4 ] combination no 8: [ 2 3 5 ] combination no 9: [ 2 4 5 ] combination no 10: [ 3 4 5 ]