我必须在Python中为正在执行的项目制作Lagrange多项式。我正在做一个重心样式,以避免使用显式的for循环,而不是牛顿的分差样式。我遇到的问题是我需要用零除,但是Python(或者也许是numpy)只是将其警告而不是正常异常。
因此,我需要知道的是如何捕获此警告,就像它是一个例外一样。我在本网站上发现的与此相关的问题并未按照我需要的方式回答。这是我的代码:
import numpy as np
import matplotlib.pyplot as plt
import warnings
class Lagrange:
def __init__(self, xPts, yPts):
self.xPts = np.array(xPts)
self.yPts = np.array(yPts)
self.degree = len(xPts)-1
self.weights = np.array([np.product([x_j - x_i for x_j in xPts if x_j != x_i]) for x_i in xPts])
def __call__(self, x):
warnings.filterwarnings("error")
try:
bigNumerator = np.product(x - self.xPts)
numerators = np.array([bigNumerator/(x - x_j) for x_j in self.xPts])
return sum(numerators/self.weights*self.yPts)
except Exception, e: # Catch division by 0. Only possible in 'numerators' array
return yPts[np.where(xPts == x)[0][0]]
L = Lagrange([-1,0,1],[1,0,1]) # Creates quadratic poly L(x) = x^2
L(1) # This should catch an error, then return 1.
执行此代码后,我得到的输出是:
Warning: divide by zero encountered in int_scalars
那是我要抓住的警告。它应该出现在列表理解中。
慕盖茨4494581
翻翻过去那场雪
拉风的咖菲猫
相关分类