log(n!)=Θ(n·log(n))吗?

我要证明log(n!)=Θ(n ·log(n))

提示我应该用n表示上限,而用n / 2)n / 2)表示下限。在我看来,这似乎并不那么直观。为什么会这样呢?我绝对可以看到如何将n转换为n ·log(n(即,记录方程的两边),但这有点倒退。

解决这个问题的正确方法是什么?我应该画递归树吗?对此没有任何递归,因此这似乎不是一种可行的方法。


慕无忌1623718
浏览 3960回答 3
3回答

慕村225694

记住log(n!) = log(1) + log(2) + ... + log(n-1) + log(n)您可以通过以下方式获得上限log(1) + log(2) + ... + log(n) <= log(n) + log(n) + ... + log(n)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; = n*log(n)在丢弃总和的前一半之后,您可以通过执行类似的操作来获得下界:log(1) + ... + log(n/2) + ... + log(n) >= log(n/2) + ... + log(n)&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= log(n/2) + log(n/2+1) + ... + log(n-1) + log(n)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;>= log(n/2) + ... + log(n/2)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; = n/2 * log(n/2)&nbsp;

紫衣仙女

我意识到这是一个非常老的问题,答案是可以接受的,但是这些答案实际上都没有使用提示所建议的方法。这是一个非常简单的参数:n!(= 1 * 2 * 3 * ... * n)是n每个均小于或等于的数字的乘积n。因此它小于n全部等于的数字的乘积n;&nbsp;即n^n。产品中一半的数字(即n/2其中的数字)n!大于或等于n/2。因此他们的乘积大于n/2全部等于的数字的乘积n/2;&nbsp;即(n/2)^(n/2)。全面记录日志以确定结果。

一只名叫tom的猫

对于下限,lg(n!) = lg(n)+lg(n-1)+...+lg(n/2)+...+lg2+lg1&nbsp; &nbsp; &nbsp; &nbsp;>= lg(n/2)+lg(n/2)+...+lg(n/2)+ ((n-1)/2) lg 2 (leave last term lg1(=0); replace first n/2 terms as lg(n/2); replace last (n-1)/2 terms as lg2 which will make cancellation easier later)&nbsp; &nbsp; &nbsp; &nbsp;= n/2 lg(n/2) + (n/2) lg 2 - 1/2 lg 2&nbsp; &nbsp; &nbsp; &nbsp;= n/2 lg n - (n/2)(lg 2) + n/2 - 1/2&nbsp; &nbsp; &nbsp; &nbsp;= n/2 lg n - 1/2lg(n!)> =(1/2)(n lg n-1)结合两个界限:1/2(n lg n-1)<= lg(n!)<= n lg n通过选择大于(1/2)的下界常数,我们可以补偿括号内的-1。因此lg(n!)= Theta(n lg n)
打开App,查看更多内容
随时随地看视频慕课网APP