具有动态变量数的公式
假设有一些data.frame foo_data_frame,并且想要找到某些其他列的目标列Y的回归。为此目的,通常使用一些公式和模型。例如:
linear_model <- lm(Y ~ FACTOR_NAME_1 + FACTOR_NAME_2, foo_data_frame)
如果公式是静态编码的话,这确实很有效。如果希望使用常数的因变量(例如2)对多个模型进行根处,则可以这样处理:
for (i in seq_len(factor_number)) { for (j in seq(i + 1, factor_number)) { linear_model <- lm(Y ~ F1 + F2, list(Y=foo_data_frame$Y, F1=foo_data_frame[[i]], F2=foo_data_frame[[j]])) # linear_model further analyzing... }}
我的问题是当程序运行期间变量的数量动态变化时,如何做同样的影响?
for (number_of_factors in seq_len(5)) { # Then root over subsets with #number_of_factors cardinality. for (factors_subset in all_subsets_with_fixed_cardinality) { # Here I want to fit model with factors from factors_subset. linear_model <- lm(Does R provide smth to write here?) }}
偶然的你
收到一只叮咚
RISEBY