人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大容错功能,怎么理解?

人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大容错功能,怎么理解?


偶然的你
浏览 2591回答 2
2回答

慕桂英546537

人工神经网络就像一个黑盒子,用于模拟任意函数。根据一定的训练样本(即所需模拟函数已知的输入和输出关系)神经网络可以改变其内部结构使其模型特性逼近训练样本。即所谓的自学习,自组织和自适应。并且,由于神经网络是采用整体逼近的方式,不会由于个别样本误差而影响整个模型特性,即所谓容错特性。其实用仿生的例子更容易理解,就像一个婴儿,父母不断教他说话,他最终能学习理解父母语言的意思,并且偶尔父母说错一两个字,孩子也能听懂。

HUWWW

自适应、自学习能力:人工神经网络可以通过训练和学习获得网络的权值和结构,呈现出很强的自学习能力和对环境的适应能力。(就是可以根据环境要求,自动调节网络结构、节点权值、步长等)自组织能力:通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数和结构。容错性:人工神经网络通过自身的网络结构能够实现对信息的记忆,而所记忆的信息是存储在神经元之间的权值中。从单个权值中看不出所存储的信息内容,因而是分布式的存储方式,这使网络具有良好的容错性。
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

机器学习