逻辑回归和线性回归的区别 机器学习?

逻辑回归和线性回归的区别 机器学习


一只甜甜圈
浏览 2049回答 2
2回答

慕斯709654

线性回归要求因变量必须是连续性数据变量;逻辑回归要求因变量必须是分类变量,二分类或者多分类的;比如要分析性别、年龄、身高、饮食习惯对于体重的影响,如果这个体重是属于实际的重量,是连续性的数据变量,这个时候就用线性回归来做;如果将体重分类,分成了高、中、低这三种体重类型作为因变量,则采用logistic回归。延展回答:逻辑回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。

jeck猫

逻辑回归:y=sigmoid(w'x)线性回归:y=w'x也就是逻辑回归比线性回归多了一个sigmoid函数,sigmoid(x)=1/(1+exp(-x)),其实就是对x进行归一化操作,使得sigmoid(x)位于0~1逻辑回归通常用于二分类模型,目标函数是二类交叉熵,y的值表示属于第1类的概率,用户可以自己设置一个分类阈值。线性回归用来拟合数据,目标函数是平法和误差
打开App,查看更多内容
随时随地看视频慕课网APP

相关分类

机器学习