import numpy as np import tensorflow as tf from flask import Flask,jsonify,render_template,request from mnist import model x= tf.placeholder("float",[None,784]) sess = tf.Session() with tf.variable_scope("regression"): y1, variables= model.regression(x) saver = tf.train.Saver(variables) saver.restore(sess,"data/regression.ckpt") with tf.variable_scope("convolutional"): keep_prob = tf.placeholder("float") y2 , variables = model.convolutional(x, keep_prob) saver = tf.train.Saver(variables) module_file = tf.train.latest_checkpoint('data/convolutional.ckpt') def regression(input): # 如果要防止time报错就要把下面的函数 return sess.run(y1, feed_dict={x: input}).flatten().tolist() def convolutional(input): #一直报错,先取消掉 return sess.run(y2, feed_dict={x: input, keep_prob: 1.0}).flatten.tolist() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) if module_file is not None: saver.restore(sess, module_file) #saver.restore(sess,"data/convolutional.ckpt") app = Flask(__name__) @app.route('/api/mnist', methods=['POST']) def mnist(): input = ((255 - np.array(request.json, dtype=np.uint8)) / 255.0).reshape(1, 784) output1 = regression(input) output2 = convolutional(input) return jsonify(results=[output1, output2]) @app.route('/') def main(): return render_template('index.html') if __name__ == "__main__": app.debug = True app.run(host="127.0.0.1", port=5000)
相关分类