合山川
2019-10-06 00:39
import numpy as np import tensorflow as tf from flask import Flask, jsonify, render_template, request from mnist import model x = tf.placeholder("float", [None, 784]) sess = tf.Session() with tf.variable_scope("regression"): y1, variables = model.regression(x) saver = tf.train.Saver(variables) #saver.restore(sess, "mnist/data/regression.ckpt") module_file = tf.train.latest_checkpoint('mnist/data/regression.ckpt') with tf.Session().as_default() as sess: sess.run(tf.global_variables_initializer()) if module_file is not None: saver.restore(sess, module_file) with tf.variable_scope("convolutional"): keep_prob = tf.placeholder("float") y2, variables = model.convolutional(x, keep_prob) saver = tf.train.Saver(variables) #saver.restore(sess, "mnist/data/convalutional.ckpt") module_file = tf.train.latest_checkpoint('mnist/data/convolutional.ckpt') with tf.Session().as_default() as sess: sess.run(tf.global_variables_initializer()) if module_file is not None: saver.restore(sess, module_file) def regression(input): return sess.run(y1, feed_dict={x: input}).flatten().tolist() def convolutional(input): return sess.run(y2, feed_dict={x: input, keep_prob:1.0}).flatten().tolist() app = Flask(__name__) @app.route('/api/mnist', methods=['post']) def mnist(): input = ((255 - np.array(request.json, dtype=np.uint8)) / 255.0).reshape(1, 784) output1 = regression(input) output2 = convolutional(input) return jsonify(results = [output1, output2]) @app.route('/') def main(): return render_template('index.html') if __name__ == '__main__': app.debug = True app.run(host='0.0.0.0', port=0000)
你问题解决了吗 我也遇到同样的问题
TensorFlow与Flask结合打造手写体数字识别
20428 学习 · 102 问题
相似问题