我正在尝试conv1根据下面的代码和架构可视化层的 cnn 网络特征图。它在没有 DataParallel 的情况下正常工作,但是当我激活model = nn.DataParallel(model)它时,它会引发错误:“DataParallel”对象没有属性“conv1”。任何建议表示赞赏。
class Model(nn.Module):
def __init__(self, kernel, num_filters, res = ResidualBlock):
super(Model, self).__init__()
self.conv0 = nn.Sequential(
nn.Conv2d(4, num_filters, kernel_size = kernel*3,
padding = 4),
nn.BatchNorm2d(num_filters),
nn.ReLU(inplace=True))
self.conv1 = nn.Sequential(
nn.Conv2d(num_filters, num_filters*2, kernel_size = kernel,
stride=2, padding = 1),
nn.BatchNorm2d(num_filters*2),
nn.ReLU(inplace=True))
self.conv2 = nn.Sequential(
nn.Conv2d(num_filters*2, num_filters*4, kernel_size = kernel, stride=2, padding = 1),
nn.BatchNorm2d(num_filters*4),
nn.ReLU(inplace=True))
self.tsconv0 = nn.Sequential(
nn.ConvTranspose2d(num_filters*4, num_filters*2, kernel_size = kernel, padding = 1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.ReLU(inplace=True),
nn.BatchNorm2d(num_filters*2))
self.tsconv1 = nn.Sequential(
nn.ConvTranspose2d(num_filters*2, num_filters, kernel_size = kernel, padding = 1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.ReLU(inplace=True),
nn.BatchNorm2d(num_filters))
self.tsconv2 = nn.Sequential(
nn.Conv2d(num_filters, 1, kernel_size = kernel*3, padding = 4, bias=False),
nn.ReLU(inplace=True))
model = Model(kernel, num_filters)
model = nn.DataParallel(model)
料青山看我应如是
相关分类