猿问

在新的(未见过的)文本上部署文本分类模型

我正在研究文本分类问题。我附上了我训练过的文本分类模型的简单虚拟片段。


如何在 new_text 上部署模型?当模型用于 时check_predictions,它可以正确地对文本进行分类,但是,当使用新数据时,分类是错误的。


这是因为new_text需要矢量化吗?我错过了一些基本的东西吗?


from collections import Counter

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score, precision_score, recall_score


df = pd.read_csv("/Users/veg.csv")

print (df)

X_train, X_test, y_train, y_test = train_test_split(df['Text'], df['Label'],random_state=1, test_size=0.2)

cv = CountVectorizer()


X_train_vectorized = cv.fit_transform(X_train)

X_test_vectorized = cv.transform(X_test)


naive_bayes = MultinomialNB()

naive_bayes.fit(X_train_vectorized, y_train)

predictions = naive_bayes.predict(X_test_vectorized)


print("Accuracy score: ", accuracy_score(y_test, predictions))

print('accuracy %s' % accuracy_score(predictions, y_test))

print(classification_report(y_test, predictions))

https://img1.sycdn.imooc.com/65a0a3ca0001764b03150158.jpg

check_predictions = []

for i in range(len(X_test)):   

    if predictions[i] == 0:

        check_predictions.append('vegetable')

    if predictions[i] == 1:

        check_predictions.append('fruit')

    if predictions[i] == 2:

        check_predictions.append('tree')

        

dummy_df = pd.DataFrame({'actual_label': list(y_test), 'prediction': check_predictions, 'Text':list(X_test)})

dummy_df.replace(to_replace=0, value='vegetable', inplace=True)

dummy_df.replace(to_replace=1, value='fruit', inplace=True)

dummy_df.replace(to_replace=2, value='tree', inplace=True)

print("DUMMY DF")

print(dummy_df.head(10))

https://img1.sycdn.imooc.com/65a0a3dc000133c502880215.jpg

慕容708150
浏览 77回答 1
1回答

牧羊人nacy

无论您输入模型中的任何(新)文本都必须经过与训练数据完全相同的预处理步骤 - 这里 CountVectorizer已经与您的X_train:new_data_vectorized = cv.transform(new_data) # NOT fit_transformnew_predictions = naive_bayes.predict(new_data_vectorized)
随时随地看视频慕课网APP

相关分类

Python
我要回答