我有一些示例代码,可以使用 Google 的自然语言 API 来分析实体及其情绪。对于 Pandas 数据框中的每条记录,我想返回一个字典列表,其中每个元素都是一个实体。然而,当我尝试让它在生产数据上工作时遇到了问题。这是示例代码
from google.cloud import language_v1 # version 2.0.0
import os
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'path/to/json'
import pandas as pd
# establish client connection
client = language_v1.LanguageServiceClient()
# helper function
def custom_analyze_entity(text_content):
global client
#print("Accepted Input::" + text_content)
document = language_v1.Document(content=text_content, type_=language_v1.Document.Type.PLAIN_TEXT, language = 'en')
response = client.analyze_entity_sentiment(request = {'document': document})
# a document can have many entities
# create a list of dictionaries, every element in the list is a dictionary that represents an entity
# the dictionary is nested
l = []
#print("Entity response:" + str(response.entities))
for entity in response.entities:
#print('=' * 20)
temp_dict = {}
temp_meta_dict = {}
temp_mentions = {}
temp_dict['name'] = entity.name
temp_dict['type'] = language_v1.Entity.Type(entity.type_).name
temp_dict['salience'] = str(entity.salience)
sentiment = entity.sentiment
temp_dict['sentiment_score'] = str(sentiment.score)
temp_dict['sentiment_magnitude'] = str(sentiment.magnitude)
for metadata_name, metadata_value in entity.metadata.items():
temp_meta_dict['metadata_name'] = metadata_name
temp_meta_dict['metadata_value'] = metadata_value
temp_dict['metadata'] = temp_meta_dict
for mention in entity.mentions:
temp_mentions['mention_text'] = str(mention.text.content)
temp_mentions['mention_type'] = str(language_v1.EntityMention.Type(mention.type_).name)
temp_dict['mentions'] = temp_mentions
#print(u"Appended Entity::: {}".format(temp_dict))
l.append(temp_dict)
return l
慕后森
相关分类