我有下面的代码。
考虑到以下限制,我想创建如下输出:
A > 5,B > 4,C > 3
如果不满足条件,我想读取数据框中的下面一行,存储数据,并创建一个名为“失败原因”的新列,其中列出 A、B 或 C 是否失败。
然后我希望脚本也报告通过的数据帧的行的“X”、“Y”和“Z”的相应值。
此后,脚本应按“组”分组并显示每组的最大“Hs”。
我真的很难在数据框中使用多个变量来完成这项工作...任何帮助将不胜感激
所需输出
Group Hs Fail Reason X Y Z
0 1 1.0 [A, B] 0.9 1.9 0.54
1 2 0.5 [A, B, C] 0.8 2.7 0.43
主要代码- 我当前的尝试
import pandas as pd
data = [[1,0.5,8,8,8,0.85,1.64,0.5],
[1,1,8,8,8,0.9,1.9,0.54],
[1,1.5,0,0,10,1.1,2.0,0.74],
[2,0.5,6,5,4,0.8,2.7,0.43],
[2,1,1,1,1,0.9,2.9,0.45],
[2,1.5,1,2,1,1.1,3.1,0.47]]
columns = ['Group', 'Hs', 'A', 'B', 'C', 'X', 'Y', 'Z']
df = pd.DataFrame(data=data, columns=columns)
Limit_A = 5
Limit_B = 4
Limit_C = 3
# Opens an empty dataframe for appending
df_new = pd.DataFrame(columns=['Group', 'Hs'])
groups = df['Group'].unique()
# for g in groups
for g in groups:
# Create new temp dataframe
df_1 = df[df['Group'] == g]
# Input conditions, checks the columns one by one are NOT EQUAL TO ZERO. Outputs boolean values.
pass_criteria = (df_1['A'] > Limit_A) & (df_1['B'] > Limit_B) & (df_1['C'] > Limit_C)
# PASSES DATAFRAME. Locates rows where the conditions of mask_1 are SATISFIED and creates another temp dataframe.
df_passes = df_1.loc[pass_criteria]
# Find the max value in the dataframe e.g. the greatest operational wave height
max_num = df_passes['Hs'].max()
# Does the opposite of mask_1
fail_criteria = (df_1['A'] < Limit_A) & (df_1['B'] < Limit_B) &(df_1['C'] < Limit_C)
# FAILED DATAFRAME. Locates rows where the conditions of pass_criteria are SATISFIED and creates another temp dataframe.
df_fails = df_1.loc[fail_criteria]
# Uses the dataframe with FAIL and mkes the value_vars rows in the melted dataframe
melted = pd.melt(df_fails, value_vars=['A', 'B', 'C'])
print(df_new)
UYOU