下面的代码创建一个分类图,其顶部有一个点图,其中点图显示每个类别的平均值和 95% 置信区间。我需要将平均数据标签添加到图中,但我不知道该怎么做。
仅供参考,每个类别都有数千个点,因此我不想标记每个数据点,而只想标记estimator=np.mean点图中的值。这可能吗??
我在此处创建了一个示例数据集,以便您可以复制并粘贴代码并自行运行。
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import numpy as np
d = {'SurfaceVersion': ['v1', 'v1', 'v1', 'v2', 'v2', 'v2', 'v3', 'v3', 'v3'],
'Error%': [.01, .03, .15, .28, .39, .01, .01, .06, .09]}
df_comb = pd.DataFrame(data=d)
plotHeight = 10
plotAspect = 2
#create catplot with jitter per surface version:
ax = sns.catplot(data=df_comb, x='SurfaceVersion', y='Error%', jitter=True, legend=False, zorder=1, height=plotHeight, aspect=plotAspect)
ax = sns.pointplot(data=df_comb, x='SurfaceVersion', y='Error%', estimator=np.mean, ci=95, capsize=.1, errwidth=1, hue='SurfaceVersion', color='k',zorder=2, height=plotHeight, aspect=plotAspect, join=False)
ax.yaxis.set_major_formatter(mtick.PercentFormatter(xmax=1.0))
plt.gca().legend().set_title('')
plt.grid(color='grey', which='major', axis='y', linestyle='--')
plt.xlabel('Surface Version')
plt.ylabel('Error %')
plt.subplots_adjust(top=0.95, left=.05)
plt.suptitle('Error%')
plt.legend([],[], frameon=False) #This is to get rid of the legend that pops up with the seaborn plot b/c it's buggy.
plt.axhline(y=0, color='r', linestyle='--')
plt.show()
MYYA
相关分类