sklearn...TfidfVectorizer仅当分析器返回对象列表时,在训练后立即应用它才有效nltk.tree.Tree。这是一个谜,因为模型在应用之前总是从文件加载。与在该会话中进行训练时相比,在自己的会话开始时加载和应用模型文件时,调试显示模型文件没有任何错误或不同。分析仪在这两种情况下均适用并正常工作。
下面是一个帮助重现这种神秘行为的脚本:
import joblib
import numpy as np
from nltk import Tree
from sklearn.feature_extraction.text import TfidfVectorizer
def lexicalized_production_analyzer(sentence_trees):
productions_per_sentence = [tree.productions() for tree in sentence_trees]
return np.concatenate(productions_per_sentence)
def train(corpus):
model = TfidfVectorizer(analyzer=lexicalized_production_analyzer)
model.fit(corpus)
joblib.dump(model, "model.joblib")
def apply(corpus):
model = joblib.load("model.joblib")
result = model.transform(corpus)
return result
# exmaple data
trees = [Tree('ROOT', [Tree('FRAG', [Tree('S', [Tree('VP', [Tree('VBG', ['arkling']), Tree('NP', [Tree('NP', [Tree('NNS', ['dots'])]), Tree('VP', [Tree('VBG', ['nestling']), Tree('PP', [Tree('IN', ['in']), Tree('NP', [Tree('DT', ['the']), Tree('NN', ['grass'])])])])])])]), Tree(',', [',']), Tree('VP', [Tree('VBG', ['winking']), Tree('CC', ['and']), Tree('VP', [Tree('VBG', ['glimmering']), Tree('PP', [Tree('IN', ['like']), Tree('NP', [Tree('NNS', ['jewels'])])])])]), Tree('.', ['.'])])]),
Tree('ROOT', [Tree('FRAG', [Tree('NP', [Tree('NP', [Tree('NNP', ['Rose']), Tree('NNS', ['petals'])]), Tree('NP', [Tree('NP', [Tree('ADVP', [Tree('RB', ['perhaps'])]), Tree(',', [',']), Tree('CC', ['or']), Tree('NP', [Tree('DT', ['some'])]), Tree('NML', [Tree('NN', ['kind'])])]), Tree('PP', [Tree('IN', ['of']), Tree('NP', [Tree('NN', ['confetti'])])])])]), Tree('.', ['.'])])])]
corpus = [trees, trees, trees]
首先训练模型并保存model.joblib文件。
train(corpus)
result = apply(corpus)
print("number of elements in results: " + str(result.getnnz()))
print("shape of results: " + str(result.shape))
我们打印结果数.getnnz()以表明该模型正在处理 120 个元素:
number of elements in results: 120
shape of results: (3, 40)
但是该模型两次都是从文件加载的,并且没有全局变量(我知道),因此我们无法想到为什么它在一种情况下有效而在另一种情况下不起作用。
GCT1015
相关分类